[1]Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley.

[2]Beck, J. (2008) Combinatorial Games: Tic-Tac-Toe Theory, Cambridge University Press.

[3]Bollobás, B. (1981) Random graphs. In Combinatorics (Temperley, H. N. V., ed.), Vol. 52 of *London Mathematical Society Lecture Notes*, Cambridge University Press, pp. 80–102.

[4]Bollobás, B. (1983) Almost all regular graphs are Hamiltonian. Europ. J. Combin. 4 94–106.

[5]Bollobás, B. (2001) Random Graphs, Cambridge University Press.

[6]Broder, A., Frieze, A., Suen, S. and Upfal, E. (1999) Optimal construction of edge-disjoint paths in random graphs. SIAM J. Comput. 28 541–573.

[7]Chung, F. (2004) Discrete isoperimetric inequalities. In Surveys in Differential Geometry: Eigenvalues of Laplacians and Other Geometric Operators (Grigor'yan, A. and Yau, S. T., eds), Vol. IX, International Press.

[8]Chvátal, V. and Erdős, P. (1978) Biased positional games. Ann. Discrete Math. 2 221–228.

[9]Dellamonica, D., Kohayakawa, Y., Marciniszyn, M. and Steger, A. (2008) On the resilience of long cycles in random graphs. Electron. J. Combin. 15 R32.

[10]Diestel, R. (2005) Graph Theory, third edition, Vol. 173 of Graduate Texts in Mathematics, Springer.

[11]Fenner, T. and Frieze, A. (1984) Hamiltonian cycles in random regular graphs. J. Combin. Theory Ser. B 37 103–198.

[12]Friedman, J. (2008) A proof of Alon's second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc. 195 (910).

[13]Frieze, A. (1988) Finding Hamilton cycles in sparse random graphs. J. Combin. Theory Ser. B 44 230–250.

[14]Frieze, A. and Krivelevich, M. (2008) On two Hamiltonian cycle problems in random graphs. Israel J. Math. 166 221–234.

[15]Greenhill, C., Kim, J. H., Janson, S. and Wormald, N. C. (2002) Permutation pseudographs and contiguity. Combin. Probab. Comput. 11 273–298.

[16]Hefetz, D., Krivelevich, M., Stojaković, M. and Szabó, T. (2009) A sharp threshold for the Hamilton cycle Maker–Breaker game. Random Struct. Alg. 34 112–122.

[17]Hefetz, D., Krivelevich, M., Stojaković, M. and Szabó, T. Global Maker-Breaker games on sparse graphs. *Europ. J. Combin*., to appear.

[18]Hefetz, D., Krivelevich, M. and Szabó, T. (2009) Hamilton cycles in highly connected and expanding graphs. Combinatorica 29 547–568.

[19]Hefetz, D. and Stich, S. (2009) On two problems regarding the Hamilton cycle game. Electron. J. Combin. 16 R28.

[20]Janson, S. (1995) Random regular graphs: Asymptotic distributions and contiguity. Combin. Probab. Comput. 4 369–405.

[21]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley.

[22]Kim, J. H., Sudakov, B. and Vu, V. H. (2002) On the asymmetry of random regular graphs. Random Struct. Alg. 21 216–224.

[23]Kim, J. H., Sudakov, B. and Vu, V. H. (2007) Small subgraphs of random regular graphs. Discrete Math. 307 1961–1967.

[24]Kim, J. H. and Vu, V. H. (2004) Sandwiching random graphs. Adv. Math. 188 444–469.

[25]Kim, J. H. and Wormald, N. C. (2001) Random matchings which induce Hamilton cycles, and Hamiltonian decompositions of random regular graphs. J. Combin. Theory Ser. B 81 20–44.

[26]Krivelevich, M., Lee, C. and Sudakov, B. (2010) Resilient pancyclicity of random and pseudo-random graphs. SIAM J. Discrete Math. 24 1–16.

[27]Krivelevich, M. and Sudakov, B. (2003) Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42 17–33.

[28]Krivelevich, M. and Sudakov, B. (2006) Pseudo-random graphs. In More Sets, Graphs and Numbers: A Salute to Vera Sòs and András Hajnal (Győri, E., Katona, G. O. H. and Lovász, L., eds), Vol. 15 of *Bolyai Society Mathematical Studies*, Springer, pp. 199–262.

[29]Krivelevich, M., Sudakov, B., Vu, V. H. and Wormald, N. (2001) Random regular graphs of high degree. Random Struct. Alg. 18 346–363.

[30]Lehman, A. (1964) A solution of the Shannon switching game. J. Soc. Ind. Appl. Math. 12 687–725.

[31]McDiarmid, C. (1998) Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics (Habib, M., McDiarmid, C., Ramirez-Alfonsin, J. and Reed, B., eds), Springer, pp. 195–248.

[32]McKay, B. D. (1985) Asymptotics for symmetric 0–1 matrices with prescribed row sums. Ars Combinatorica 19 15–26.

[33]Nilli, A. (1991) On the second eigenvalue of a graph. Discrete Math. 91 207–210.

[34]Pósa, L. (1976) Hamiltonian circuits in random graphs. Discrete Math. 14 359–364.

[35]Robinson, R. and Wormald, N. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117–125.

[36]Robinson, R. and Wormald, N. (1994) Almost all regular graphs are Hamiltonian. Random Struct. Alg. 5 363–374.

[37]Sudakov, B. and Vu, V. H. (2008) The local resilience of random graphs. Random Struct. Alg. 33 409–433.

[38]Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 436–452.

[39]Wormald, N. C. (1981) The asymptotic connectivity of labelled regular graphs. J. Combin. Theory Ser. B 31 156–167.

[40]Wormald, N. C. (1999) Models of random regular graphs. In Surveys in Combinatorics (Lamb, J. and Preece, D., eds), Vol. 276 of *London Mathematical Society Lecture Notes*, Cambridge University Press, pp. 239–298.