[1]Addario-Berry, L. and Reed, B. (2009) Minima in branching random walks. Ann. Probab. 37 1044–1079.

[2]Aïidékon, É. (2011) Convergence in law of the minimum of a branching random walk. arXiv:1101.1810 [math.PR].

[3]Alon, N. and Spencer, J. (2008) The Probabilistic Method, third edition, Wiley.

[4]Arya, S., Golin, M. and Mehlhorn, K. (1999) On the expected depth of random circuits. Combin. Probab. Comput. 8 209–228.

[5]Athreya, K. B. and Ney, P. E. (1972) Branching Processes, Springer.

[6]Bachmann, M. (2000) Limit theorems for the minimal position in a branching random walk with independent logconcave displacements. Adv. Appl. Probab. 32 159–176.

[7]Biggins, J. (1976) The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8 446–459.

[8]Bramson, M. (1978) Maximum displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 531–581.

[9]Bramson, M. and Zeitouni, O. (2009) Tightness for a family of recursive equations. Ann. Probab. 37 615–653.

[10]Chauvin, B. and Drmota, M. (2006) The random multisection problem, travelling waves, and the distribution of the height of *m*-ary search trees. Algorithmica 46 299–327.

[11]Chernoff, H. (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493–507.

[12]Chung, K. and Erdős, P. (1952) On the application of the Borel–Cantelli lemma. *Trans. Amer. Math. Soc.*, pp. 179–186.

[13]Codenotti, B., Gemmell, P. and Simon, J. (1995) Average circuit depth and average communication complexity. In Algorithms: ESA '95, Vol. 979 of *Lecture Notes in Computer Science*, Springer, pp. 102–112.

[14]Darrasse, A., Hwang, H.-K., Bodini, O. and Soria, M. (2010) The connectivity-profile of random increasing *k*-trees. In *Proc. ANALCO*, pp. 99–106.

[15]Dembo, A. and Zeitouni, O. (1998) Large Deviations Techniques and Applications, Springer.

[16]Devroye, L. (1986) A note on the height of binary search trees. J. Assoc. Comput. Mach. 33 489–498.

[17]Devroye, L. (1998) Branching processes and their applications in the analysis of tree structures and tree algorithms. In Probabilistic Methods for Algorithmic Discrete Mathematics, Vol. 16 of *Algorithms and Combinatorics*, Springer, pp. 249–314.

[18]Devroye, L. and Janson, S. (2011) Long and short paths in uniform random recursive dags. Arkiv för Matematik 49 61–77.

[19]Devroye, L. and Lu, J. (1995) The strong convergence of maximal degrees in uniform random recursive trees and dags. Random Struct. Alg. 7 1–14.

[20]Devroye, L., Fawzi, O. and Fraiman, N. (2012) Depth properties of scaled attachment random recursive trees. Random Struct. Alg. 41 66–98.

[21]Diaz, J., Serna, M. J., Spirakis, P., Toran, J. and Tsukiji, T. (1994) On the expected depth of Boolean circuits. Technical Report LSI-94-7-R, Universitat Politecnica de Catalunya, Dep. LSI.

[22]Drmota, M. (2003) An analytic approach to the height of binary search trees II. J. Assoc. Comput. Mach. 50 333–374.

[23]D'Souza, R. M., Krapivsky, P. L. and Moore, C. (2007) The power of choice in growing trees. Eur. Phys. J. B 59 535–543.

[24]Grimmett, G. and Stirzaker, D. (2001) Probability and Random Processes, Oxford University Press.

[25]Gut, A. (2009) Stopped Random Walks: Limit Theorems and Applications, Springer.

[26]Hammersley, J. M. (1974) Postulates for subadditive processes. Ann. Probab. 2 652–680.

[27]Hu, Y. and Shi, Z. (2009) Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 742–789.

[28]Kingman, J. (1975) The first birth problem for an age-dependent branching process. Ann. Probab. 3 790–801.

[29]Mahmoud, H. (2010) The power of choice in the construction of recursive trees. Method. Comput. Appl. Probab. 12 763–773.

[30]Mahmoud, H. and Tsukiji, T. (2004) Limit laws for terminal nodes in random circuits with restricted fan-out: a family of graphs generalizing binary search trees. Acta Informatica 41 99–110.

[31]McDiarmid, C. (1995) Minimal positions in a branching random walk. Ann. Appl. Probab. 5 128–139.

[32]Pittel, B. (1985) Asymptotical growth of a class of random trees. Ann. Probab. 13 414–427.

[33]Reed, B. (2003) The height of a random binary search tree. J. Assoc. Comput. Mach. 50 306–332.

[34]Rockafellar, R. (1970) Convex Analysis, Princeton University Press.

[35]Tsukiji, T. and Mahmoud, H. (2001) A limit law for outputs in random recursive circuits. Algorithmica 31 403–412.

[36]Tsukiji, T. and Xhafa, F. (1996) On the depth of randomly generated circuits. In Algorithms: ESA '96, Vol. 1136 of *Lecture Notes in Computer Science*, Springer, pp. 208–220.