Published online by Cambridge University Press: 14 May 2013
We show that the expected number of maximal empty axis-parallel boxes amidst n random points in the unit hypercube [0,1]d in $\mathbb{R}^d$ is (1 ± o(1))
$\frac{(2d-2)!}{(d-1)!}$n lnd−1n, if d is fixed. This estimate is relevant to analysis of the performance of exact algorithms for computing the largest empty axis-parallel box amidst n given points in an axis-parallel box R, especially the algorithms that proceed by examining all maximal empty boxes. Our method for bounding the expected number of maximal empty boxes also shows that the expected number of maximal empty orthants determined by n random points in
$\mathbb{R}^d$ is (1 ± o(1)) lnd−1n, if d is fixed. This estimate is related to the expected number of maximal (or minimal) points amidst random points, and has application to algorithms for coloured orthogonal range counting.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.