Skip to main content

Measures of Pseudorandomness for Finite Sequences: Minimal Values

  • N. ALON (a1), Y. KOHAYAKAWA (a2), C. MAUDUIT (a3), C. G. MOREIRA (a4) and V. RÖDL (a5)...

Mauduit and Sárközy introduced and studied certain numerical parameters associated to finite binary sequences $E_N\in\{-1,1\}^N$ in order to measure their ‘level of randomness’. Two of these parameters are the normality measure$\cal{N}(E_N)$ and the correlation measure$C_k(E_N)$of order k, which focus on different combinatorial aspects of $E_N$. In their work, amongst others, Mauduit and Sárközy investigated the minimal possible value of these parameters.

In this paper, we continue the work in this direction and prove a lower bound for the correlation measure $C_k(E_N)$ (k even) for arbitrary sequences $E_N$, establishing one of their conjectures. We also give an algebraic construction for a sequence $E_N$ with small normality measure $\cal{N}(E_N)$.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed