Skip to main content Accessibility help
×
Home

The Min Mean-Weight Cycle in a Random Network

  • CLAIRE MATHIEU (a1) and DAVID B. WILSON (a2)

Abstract

The mean weight of a cycle in an edge-weighted graph is the sum of the cycle's edge weights divided by the cycle's length. We study the minimum mean-weight cycle on the complete graph on n vertices, with random i.i.d. edge weights drawn from an exponential distribution with mean 1. We show that the probability of the min mean weight being at most c/n tends to a limiting function of c which is analytic for c ≤ 1/e, discontinuous at c = 1/e, and equal to 1 for c > 1/e. We further show that if the min mean weight is ≤ 1/(en), then the length of the relevant cycle is Θp(1) (i.e., it has a limiting probability distribution which does not scale with n), but that if the min mean weight is > 1/(en), then the relevant cycle almost always has mean weight (1 + o(1))/(en) and length at least (2/π2o (1)) log2n log log n.

Copyright

References

Hide All
[1]Aldous, D. (1998) On the critical value for ‘percolation’ of minimum-weight trees in the mean-field distance model. Combin. Probab. Comput. 7 110.
[2]Aldous, D. J. (2001) The ζ(2) limit in the random assignment problem. Random Struct. Alg., 18 381418.
[3]Angel, O., Flaxman, A. D. and Wilson, D. B. (2012) A sharp threshold for minimum bounded-depth and bounded-diameter spanning trees and Steiner trees in random networks. Combinatorica 32 133.
[4]Arratia, R., Goldstein, L. and Gordon, L. (1989) Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Probab. 17 925.
[5]Bollobás, B., Gamarnik, D., Riordan, O. and Sudakov, B. (2004) On the value of a random minimum weight Steiner tree. Combinatorica 24 187207.
[6]Chebolu, P., Frieze, A., Melsted, P. and Sorkin, G. B. (2009) Average-case analyses of Vickrey costs. In Approximation, Randomization, and Combinatorial Optimization (Dinur, I., Jansen, K., Naor, J. and Rolim, J., eds), Vol. 5687 of Lecture Notes in Computer Science, Springer, pp. 434447.
[7]Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. and Knuth, D. E. (1996) On the Lambert W function. Adv. Comput. Math. 5 329359.
[8]Dasdan, A. (2004) Experimental analysis of the fastest optimum cycle ratio and mean algorithms. ACM Trans. Des. Autom. Electron. Syst. 9 385418.
[9]Ding, J. (2011) Scaling window for mean-field percolation of averages. Ann. Probab., to appear. arXiv:1110.3361
[10]Flajolet, P., Knuth, D. E. and Pittel, B. (1989) The first cycles in an evolving graph. Discrete Math. 75 167215.
[11]Frieze, A. M. (1985) On the value of a random minimum spanning tree problem. Discrete Appl. Math. 10 4756.
[12]Frieze, A. (2004) On random symmetric travelling salesman problems. Math. Oper. Res. 29 878890.
[13]Frieze, A. M. and Grimmett, G. R. (1985) The shortest-path problem for graphs with random arc-lengths. Discrete Appl. Math. 10 5777.
[14]Frieze, A. M. and McDiarmid, C. J. H. (1989) On random minimum length spanning trees. Combinatorica 9 363374.
[15]Georgiadis, L., Goldberg, A. V., Tarjan, R. E. and Werneck, R. F. (2009) An experimental study of minimum mean cycle algorithms. In ALENEX09: Workshop on Algorithm Engineering and Experiments (Finocchi, I. and Hershberger, J., eds), SIAM, pp. 114.
[16]van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2006) Size and weight of shortest path trees with exponential link weights. Combin. Probab. Comput. 15 903926.
[17]van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2007) The weight of the shortest path tree. Random Struct. Alg., 30 359379.
[18]Hooghiemstra, G. and Van Mieghem, P. (2008) The weight and hopcount of the shortest path in the complete graph with exponential weights. Combin. Probab. Comput. 17 537548.
[19]Janson, S. (1987) Poisson convergence and Poisson processes with applications to random graphs. Stochastic Process. Appl. 26 130.
[20]Janson, S. (1999) One, two and three times log n/n for paths in a complete graph with random weights. Combin. Probab. Comput. 8 347361.
[21]Janson, S., Knuth, D. E., Łuczak, T. and Pittel, B. (1993) The birth of the giant component. Random Struct. Alg. 4 231358.
[22]Komlós, J., Major, P. and Tusnády, G. (1976) An approximation of partial sums of independent RV's, and the sample DF II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 3358.
[23]Linusson, S. and Wästlund, J. (2004) A proof of Parisi's conjecture on the random assignment problem. Probab. Theory Rel. Fields 128 419440.
[24]Mörters, P. and Peres, Y. (2010) Brownian Motion, Vol. 30 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.
[25]Nair, C., Prabhakar, B. and Sharma, M. (2005) Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Struct. Alg., 27 413444.
[26]Stanley, R. P. (1999) Enumerative Combinatorics 2, Vol. 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.
[27]Young, N. E., Tarjan, R. E. and Orlin, J. B. (1991) Faster parametric shortest path and minimum-balance algorithms. Networks 21 205221.

Keywords

Related content

Powered by UNSILO

The Min Mean-Weight Cycle in a Random Network

  • CLAIRE MATHIEU (a1) and DAVID B. WILSON (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.