[1]
Alon, N., Fischer, E., Krivelevich, M. and Szegedy, M. (2000) Efficient testing of large graphs. Combinatorica 20 451–476.10.1007/s004930070001

[2]
Balogh, J., Hu, P., Lidický, B. and Pfender, F. (2016) Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle. European J. Combin
*.* 52 (A) 47–58.

[3]
Borchers, B. (1999) CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11 613–623.

[4]
Conlon, D. and Fox, J. (2013) Graph removal lemmas. In Surveys in Combinatorics 2013, Vol. 409 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 1–49.

[5]
Erdös, P. (1984) On some problems in graph theory, combinatorial analysis and combinatorial number theory. In Graph Theory and Combinatorics (Cambridge, 1983), Academic Press, pp. 1–17.

[6]
Erdös, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 1087–1091.

[7]
Frieze, A. and Karoński, M. (2016) Introduction to Random Graphs, Cambridge University Press.

[8]
Grzesik, A. (2012) On the maximum number of five-cycles in a triangle-free graph. J. Combin. Theory Ser. B 102 1061–1066.

[9]
Hatami, H., Hladký, J., Král’, D., Norine, S. and Razborov, A. (2013) On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A 120 722–732.

[10]
Lidický, B. and Pfender, F. (2018) Pentagons in triangle-free graphs. European J. Combin
*.* 74 85–89.

[11]
Liu, H., Pikhurko, O., Sharifzadeh, M. and Staden, K. (2019) Stability from symmetrisation arguments. Work in progress.

[12]
Liu, H., Pikhurko, O. and Staden, K. (2017) The exact minimum number of triangles in graphs of given order and size. arXiv:1712.00633

[13]
Lovász, L. (2012) Large Networks and Graph Limits, Colloquium Publications, American Mathematical Society.

[14]
Lovász, L. and Simonovits, M. (1983) On the number of complete subgraphs of a graph, II. In Studies in Pure Mathematics (Erdös, P. et al., eds), Birkhäuser, pp. 459–495.10.1007/978-3-0348-5438-2_41

[15]
Lovász, L. and Szegedy, B. (2006) Limits of dense graph sequences. J. Combin. Theory Ser. B 96 933–957.

[16]
Lovász, L. and Szegedy, B. (2010) Testing properties of graphs and functions. Israel J. Math
*.* 178 113–156.

[17]
Mantel, W. (1907) Problem 28. Winkundige Opgaven 10 60–61.

[18]
Moon, J. W. and Moser, L. (1962) On a problem of Turán. Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 283–286.

[19]
Nikiforov, V. (2011) The number of cliques in graphs of given order and size. Trans. Amer. Math. Soc. 363 1599–1618.

[20]
Nordhaus, E. A. and Stewart, B. M. (1963) Triangles in an ordinary graph. Canad. J. Math. 15 33–41.

[21]
Pikhurko, O. (2010) An analytic approach to stability. Discrete Math
*.* 310 2951–2964.

[22]
Pikhurko, O. and Razborov, A. (2017) Asymptotic structure of graphs with the minimum number of triangles. Combin. Probab. Comput. 26 138–160.

[23]
Pikhurko, O., Sliacan, J. and Tyros, K. (2019) Strong forms of stability from flag algebra calculations. J. Combin. Theory Ser. B 135 129–178.

[24]
Pippenger, N. and Golumbic, M. C. (1975) The inducibility of graphs. J. Combin. Theory Ser. B 19 189–203.

[25]
Razborov, A. (2007) Flag algebras. J. Symbolic Logic 72 1239–1282.

[26]
Razborov, A. (2008) On the minimal density of triangles in graphs. Combin. Probab. Comput. 17 603–618.

[27]
Reiher, C. (2016) The clique density theorem. Ann. of Math. (2) 184 683–707.

[28]
Sidorenko, A. (1991) Inequalities for functionals generated by bipartite graphs. Diskret. Mat. 3 50–65.

[29]
Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 436–452.