[1]
Bender, E. A. and Canfield, E. R. (1978) The asymptotic number of labelled graphs with given degree sequence.
J. Combin. Theory Ser. A
24
296–307.

[2]
Bollobás, B. (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
Europ. J. Combin.
1
311–316.

[3]
Cain, J. A., Sanders, P. and Wormald, N. (2007) The random graph threshold for *k*-orientability and a fast algorithm for optimal multiple-choice allocation. In *Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms: SODA 2007*, pp. 469–476.

[4]
Cooper, C. (2004) The cores of random hypergraphs with a given degree sequence.
Random Struct. Alg.
25
353–375.

[5]
Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R. and Rink, M. (2010) Tight thresholds for cuckoo hashing via XORSAT. In *Proc. 37th International Colloquium on Automata, Languages and Programming: ICALP 2010*, Vol. 6198 of Lecture Notes in Computer Science, Springer, pp. 213–225.

[6]
Ellis, R. (2006) Entropy, Large Deviations, and Statistical Mechanics, Classics in Mathematics. Springer.

[7]
Fernholz, D. and Ramachandran, V. (2007) The *k*-orientability thresholds for *G*_{n,p}
. In *Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms: SODA 2007*, pp. 459–468.

[8]
Fotakis, D., Pagh, R., Sanders, P. and Spirakis, P. (2003) Space efficient hash tables with worst case constant access time. In *Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science: STACS 2003*, Vol. 2607 of Lecture Notes in Computer Science, Springer, pp. 271–282.

[9]
Fountoulakis, N. and Panagiotou, K. (2010) Orientability of random hypergraphs and the power of multiple choices. In *Proc. 37th International Colloquium on Automata, Languages and Programming: ICALP 2010*, Vol. 6198 of Lecture Notes in Computer Science, Springer, pp. 348–359.

[10]
Fountoulakis, N. and Panagiotou, K. (2012) Sharp load thresholds for cuckoo hashing.
Random Struct. Alg.
41
306–333.

[11]
Frieze, A. and Melsted, P. (2012) Maximum matchings in random bipartite graphs and the space utilization of cuckoo hash tables.
Random Struct. Alg.
41
334–364.

[12]
Gao, P. and Wormald, N. C. (2010) Load balancing and orientability thresholds for random hypergraphs. In *Proc. 42nd ACM Symposium on Theory of Computing: STOC 2010*, pp. 97–104.

[13]
Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience.

[14]
Kim, J. H. (2004) Poisson cloning model for random graphs. Manuscript.

[15]
Leconte, M., Lelarge, M. and Massoulié, L. (2013) Convergence of multivariate belief propagation, with applications to cuckoo hashing and load balancing. In *Proc. 24th ACM–SIAM Symposium on Discrete Algorithms: SODA 2013*, pp. 35–46.

[16]
Lelarge, M. (2012) A new approach to the orientation of random hypergraphs. In *Proc. 23th ACM–SIAM Symposium on Discrete Algorithms: SODA 2012*, pp. 251–264.

[17]
Molloy, M. (2005) Cores in random hypergraphs and boolean formulas.
Random Struct. Alg.
27
124–135.

[18]
Pagh, R. and Rodler, F. F. (2001) Cuckoo hashing. In *Proc. 9th Annual European Symposium on Algorithms: ESA 2001*, pp. 121–133.

[19]
Sanders, P., Egner, S. and Korst, J. (1999) Fast concurrent access to parallel disks. In *Proc. 11th Annual ACM–SIAM Symposium on Discrete Algorithms: SODA 1999*, pp. 849–858.