[2]Alon, N., Kohayakawa, Y., Mauduit, C., Moreira, C. G. and Rödl, V. (2006) Measures of pseudorandomness for finite sequences: Minimal values. Combin. Probab. Comput. 15 1–29.
[3]Alon, N., Kohayakawa, Y., Mauduit, C., Moreira, C. G. and Rödl, V. (2007) Measures of pseudorandomness for finite sequences: Typical values. Proc. Lond. Math. Soc. (3) 95 778–812.
[4]Bailey, D. H. and Crandall, R. E. (2002) Random generators and normal numbers. Experiment. Math. 11 527–546.
[5]Knuth, D. E. (1981) The Art of Computer Programming, Vol. 2, second edition, Addison-Wesley.
[6]Korobov, N. M. (1955) Numbers with bounded quotient and their applications to questions of Diophantine approximation. Izv. Akad. Nauk SSSR Ser. Mat. 19 361–380.
[7]Levin, M. B. (1999) On the discrepancy estimate of normal numbers. Acta Arith. 88 99–111.
[8]Mauduit, C. and Sárközy, A. (1997) On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82 365–377.
[9]Niederreiter, H. (1992) Random Number Generation and Quasi-Monte Carlo Methods, Vol. 63 of CBMS–NSF Regional Conference Series in Applied Mathematics, SIAM.
[10]Schmidt, W. M. (1972) Irregularities of distribution VII. Acta Arith. 21 45–50.
[11]Wall, D. D. (1949) Normal numbers. PhD thesis, University of California, Berkeley.