Skip to main content
×
×
Home

The Number of Satisfying Assignments of Random Regular k-SAT Formulas

  • AMIN COJA-OGHLAN (a1) and NICK WORMALD (a2)
Abstract

Let Φ be a random k-SAT formula in which every variable occurs precisely d times positively and d times negatively. Assuming that k is sufficiently large and that d is slightly below the critical degree where the formula becomes unsatisfiable with high probability, we determine the limiting distribution of the number of satisfying assignments.

Copyright
References
Hide All
[1] Achlioptas, D. and Coja-Oghlan, A. (2008) Algorithmic barriers from phase transitions. In FOCS 2008: 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, pp. 793802.
[2] Achlioptas, D. and Moore, C. (2006) Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM J. Comput. 36 740762.
[3] Achlioptas, D., Naor, A. and Peres, Y. (2005) Rigorous location of phase transitions in hard optimization problems. Nature 435 759764.
[4] Achlioptas, D. and Peres, Y. (2004) The threshold for random k-SAT is 2k ln 2 - O(k). J. Amer. Math. Soc. 17 947973.
[5] Bapst, V. and Coja-Oghlan, A. (2016) The condensation phase transition in the regular k-SAT model. In RANDOM 2016: 20th International Workshop on Approximation, Randomization, and Combinatorial Optimization, Springer, #22.
[6] Bollobas, B. (2001) Random Graphs, second edition, Cambridge University Press.
[7] Békéssy, A., Békéssy, P. and Komlós, J. (1972) Asymptotic enumeration of regular matrices. Studia Sci. Math. Hungar. 7 343353.
[8] Bolthausen, E. (1984) An estimate of the remainder in a combinatorial central limit theorem. Z. Wahr. Verw. Gebiete 66 379386.
[9] Coja-Oghlan, A. and Panagiotou, K. (2016) The asymptotic k-SAT threshold. Adv. Math. 288 9851068.
[10] Coja-Oghlan, A. and Panagiotou, K. (2013) Going after the k-SAT threshold. In STOC 2013: 45th Annual ACM Symposium on Theory of Computing, ACM, pp. 705–714.
[11] Coja-Oghlan, A. and Vilenchik, D. (2013) Chasing the k-colorability threshold. In FOCS 2013: IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE, pp. 380–389.
[12] Coja-Oghlan, A. and Zdeborová, L. (2012) The condensation transition in random hypergraph 2-coloring. In SODA 2012: 23rd Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, pp. 241–250.
[13] Davis, B. and McDonald, D. (1995) An elementary proof of the local central limit theorem. J. Theoret. Probab. 8 693701.
[14] Ding, J., Sly, A. and Sun, N. (2014) Satisfiability threshold for random regular NAE-SAT. In STOC 2014: 46th Annual ACM Symposium on Theory of Computing, ACM, pp. 814–822.
[15] Ding, J., Sly, A. and Sun, N. (2015) Proof of the satisfiability conjecture for large k. In STOC 2015: Proc. 47th Annual ACM Symposium on Theory of Computing, ACM, pp. 59–68.
[16] Frieze, A. and Wormald, N. C. (2005) Random k-Sat: A tight threshold for moderately growing k. Combinatorica 25 297305.
[17] Janson, S. (1995) Random regular graphs: Asymptotic distributions and contiguity. Combin. Probab. Comput. 4 369405.
[18] Kirousis, L., Kranakis, E., Krizanc, D. and Stamatiou, Y. (1998) Approximating the unsatisfiability threshold of random formulas. Random Struct. Alg. 12 253269.
[19] Mézard, M., Parisi, G. and Zecchina, R. (2002) Analytic and algorithmic solution of random satisfiability problems. Science 297 812815.
[20] Molloy, M., Robalewska, H., Robinson, R. W. and Wormald, N. C. (1997) 1-factorisations of random regular graphs. Random Struct. Alg. 10 305321.
[21] Rassmann, F. (2016) On the number of solutions in random hypergraph 2-colouring. Electron. J. Combin. 24 3.11.
[22] Rathi, V., Aurell, E., Rasmussen, L. K. and Skoglund, M. (2010) Bounds on threshold of regular random k-SAT. In SAT 2010: 12th International Conference on Theory and Applications of Satisfiability Testing, Springer, pp. 264–277.
[23] Robinson, R. W. and Wormald, N. C. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117125.
[24] Sly, A., Sun, N. and Zhang, Y. (2016) The number of solutions for random regular NAE-SAT. Proc. 57th FOCS 724–731.
[25] Wormald, N. C. (1978) Some problems in the enumeration of labelled graphs. Doctoral thesis, Newcastle University.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed