[1] Achlioptas, D. and Coja-Oghlan, A. (2008) Algorithmic barriers from phase transitions. In FOCS 2008: 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, pp. 793–802.

[2] Achlioptas, D. and Moore, C. (2006) Random *k*-SAT: Two moments suffice to cross a sharp threshold. SIAM J. Comput. 36 740–762.

[3] Achlioptas, D., Naor, A. and Peres, Y. (2005) Rigorous location of phase transitions in hard optimization problems. Nature 435 759–764.

[4] Achlioptas, D. and Peres, Y. (2004) The threshold for random *k*-SAT is 2^{k} ln 2 - *O*(*k*). J. Amer. Math. Soc. 17 947–973.

[5] Bapst, V. and Coja-Oghlan, A. (2016) The condensation phase transition in the regular *k*-SAT model. In *RANDOM 2016: 20th International Workshop on Approximation, Randomization, and Combinatorial Optimization*, Springer, #22.

[6] Bollobas, B. (2001) Random Graphs, second edition, Cambridge University Press.

[7] Békéssy, A., Békéssy, P. and Komlós, J. (1972) Asymptotic enumeration of regular matrices. Studia Sci. Math. Hungar. 7 343–353.

[8] Bolthausen, E. (1984) An estimate of the remainder in a combinatorial central limit theorem. Z. Wahr. Verw. Gebiete 66 379–386.

[9] Coja-Oghlan, A. and Panagiotou, K. (2016) The asymptotic *k*-SAT threshold. Adv. Math. 288 985–1068.

[10] Coja-Oghlan, A. and Panagiotou, K. (2013) Going after the *k*-SAT threshold. In *STOC 2013: 45th Annual ACM Symposium on Theory of Computing*, ACM, pp. 705–714.

[11] Coja-Oghlan, A. and Vilenchik, D. (2013) Chasing the *k*-colorability threshold. In *FOCS 2013: IEEE 54th Annual Symposium on Foundations of Computer Science*, IEEE, pp. 380–389.

[12] Coja-Oghlan, A. and Zdeborová, L. (2012) The condensation transition in random hypergraph 2-coloring. In *SODA 2012: 23rd Annual ACM–SIAM Symposium on Discrete Algorithms*, SIAM, pp. 241–250.

[13] Davis, B. and McDonald, D. (1995) An elementary proof of the local central limit theorem. J. Theoret. Probab. 8 693–701.

[14] Ding, J., Sly, A. and Sun, N. (2014) Satisfiability threshold for random regular NAE-SAT. In *STOC 2014: 46th Annual ACM Symposium on Theory of Computing*, ACM, pp. 814–822.

[15] Ding, J., Sly, A. and Sun, N. (2015) Proof of the satisfiability conjecture for large *k*. In *STOC 2015: Proc. 47th Annual ACM Symposium on Theory of Computing*, ACM, pp. 59–68.

[16] Frieze, A. and Wormald, N. C. (2005) Random *k*-Sat: A tight threshold for moderately growing *k*. Combinatorica 25 297–305.

[17] Janson, S. (1995) Random regular graphs: Asymptotic distributions and contiguity. Combin. Probab. Comput. 4 369–405.

[18] Kirousis, L., Kranakis, E., Krizanc, D. and Stamatiou, Y. (1998) Approximating the unsatisfiability threshold of random formulas. Random Struct. Alg. 12 253–269.

[19] Mézard, M., Parisi, G. and Zecchina, R. (2002) Analytic and algorithmic solution of random satisfiability problems. Science 297 812–815.

[20] Molloy, M., Robalewska, H., Robinson, R. W. and Wormald, N. C. (1997) 1-factorisations of random regular graphs. Random Struct. Alg. 10 305–321.

[21] Rassmann, F. (2016) On the number of solutions in random hypergraph 2-colouring. Electron. J. Combin. 24 3.11.

[22] Rathi, V., Aurell, E., Rasmussen, L. K. and Skoglund, M. (2010) Bounds on threshold of regular random *k*-SAT. In *SAT 2010: 12th International Conference on Theory and Applications of Satisfiability Testing*, Springer, pp. 264–277.

[23] Robinson, R. W. and Wormald, N. C. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117–125.

[24] Sly, A., Sun, N. and Zhang, Y. (2016) The number of solutions for random regular NAE-SAT. *Proc. 57th FOCS* 724–731.

[25] Wormald, N. C. (1978) Some problems in the enumeration of labelled graphs. Doctoral thesis, Newcastle University.