Skip to main content Accessibility help

On a Square Packing Problem

  • S. BOUCHERON (a1) and W. FERNANDEZ de la VEGA (a1)


An instance of the square packing problem consists of n squares with independently, uniformly distributed side-lengths and independently, uniformly distributed locations on the unit d-dimensional torus. A packing is a maximum family of pairwise disjoint squares. The one-dimensional version of the problem is the classical random interval packing problem. This paper deals with the asymptotic behaviour of packings as n tends to infinity while d = 2. Coffman, Lueker, Spencer and Winkler recently proved that the average size of packing is Θ(nd/(d+1)). Using partitioning techniques, sub-additivity and concentration of measure arguments, we show first that, after normalization by n2/3, the size of two-dimensional square packings tends in probability toward a genuine limit γ. Straightforward concentration arguments show that large fluctuations of order n2/3 should have probability vanishing exponentially fast with n2/3. Even though γ remains unknown, using a change of measure argument we show that this upper bound on tail probabilities is qualitatively correct.


Related content

Powered by UNSILO

On a Square Packing Problem

  • S. BOUCHERON (a1) and W. FERNANDEZ de la VEGA (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.