[1]
Aldous, D. (1992) Asymptotics in the random assignment problem. Probab. Theory Rel. Fields
93
507–534.

[2]
Aldous, D. (2001) The ζ(2) limit in the random assignment problem. Random Struct. Alg.
4
381–418.

[3]
Avram, F. and Bertsimas, D. (1992) The minimum spanning tree constant in geometrical probability and under the independent model: A unified approach. Ann. Appl. Probab.
2
113–130.

[4]
Beveridge, A., Frieze, A. M. and McDiarmid, C. J. H. (1998) Minimum length spanning trees in regular graphs. Combinatorica
18
311–333.

[5]
Bollobás, B. (1980) A probabilistic proof of an asymptotic formula for the number of labelled graphs. Europ. J. Combin.
1
311–316.

[6]
Cain, J. A., Sanders, P. and Wormald, N. (2007) The random graph threshold for *k*-orientability and a fast algorithm for optimal multiple-choice allocation. In SODA 2007: Proc. 18th Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, pp. 469–476.

[7]
Cooper, C., Frieze, A. M., Ince, N., Janson, S. and Spencer, J. (2016) On the length of a random minimum spanning tree. Combin. Probab. Comput.
25, 89–107.

[8]
Durrett, R. (1991) Probability: Theory and Examples, Wadsworth & Brooks/Cole.

[9]
Fenner, T. I. and Frieze, A. M. (1982) On the connectivity of random *m*-orientable graphs and digraphs. Combinatorica
2
347–359.

[10]
Frieze, A. M. (1985) On the value of a random minimum spanning tree problem. Discrete Appl. Math.
10
47–56.

[11]
Frieze, A. M. (1986) On large matchings and cycles in sparse random graphs. Discrete Math.
59
243–256.

[12]
Frieze, A. M. (2004) On random symmetric travelling salesman problems. Math. Oper. Res.
29
878–890.

[13]
Frieze, A. M. and Grimmett, G. R. (1985) The shortest path problem for graphs with random arc-lengths. Discrete Appl. Math.
10
57–77.

[14]
Frieze, A. M. and McDiarmid, C. J. H. (1989) On random minimum length spanning trees. Combinatorica
9
363–374.

[15]
Frieze, A. M., Ruszinko, M. and Thoma, L. (2000) A note on random minimum length spanning trees. Electron. J. Combin.
7
R41.

[16]
Gao, P., Pérez-Giménez, X. and Sato, C. M. (2014) Arboricity and spanning-tree packing in random graphs with an application to load balancing. Extended abstract published in *SODA 2014*, pp. 317–326.

[17]
Janson, S. (1995) The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Struct. Alg.
7
337–355.

[18]
Janson, S. (1999) One, two and three times log *n*/*n* for paths in a complete graph with random weights. Combin. Probab. Comput.
8
347–361.

[19]
Janson, S. and Łuczak, M. J. (2007) A simple solution to the *k*-core problem. Random Struct. Alg.
30
50–62.

[20]
Karp, R. M. (1979) A patching algorithm for the non-symmetric traveling salesman problem. SIAM J. Comput.
8
561–573.

[21]
Kordecki, W. and Lyczkowska-Hanćkowiak, A. (2013) Exact expectation and variance of minimal basis of random matroids. Discussiones Mathematicae Graph Theory
33
277–288.

[22]
Linusson, S. and Wästlund, J. (2004) A proof of Parisi's conjecture on the random assignment problem. Probab. Theory Rel. Fields
128
419–440.

[23]
Łuczak, T. (1991) Size and connectivity of the *k*-core of a random graph. Discrete Math.
91
61–68.

[24]
Nair, C., Prabhakar, B. and Sharma, M. (2005) Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Struct. Alg.
27
413–444.

[25]
Nash-Williams, C. St. J. A. (1961) Edge-disjoint spanning trees of finite graphs. J. London Math. Soc.
36
445–450.

[26]
Nash-Williams, C. St. J. A. (1964) Decomposition of finite graphs into forests. J. London Math. Soc.
39
12.

[27]
Oxley, J. (1992) Matroid Theory, Oxford University Press.

[28]
Penrose, M. (1998) Random minimum spanning tree and percolation on the *n*-cube. Random Struct. Alg.
12
63–82.

[29]
Pittel, B., Spencer, J. and Wormald, N. (1996) Sudden emergence of a giant *k*-core in a random graph. J. Combin. Theory Ser. B
67
111–151.

[30]
Steele, J. M. (1987) On Frieze's ζ(3) limit for lengths of minimal spanning trees. Discrete Appl. Math.
18
99–103.

[31]
Wästlund, J. (2009) An easy proof of the ζ(2) limit in the random assignment problem. Electron. Comm. Probab.
14
261–269.

[32]
Wästlund, J. (2010) The mean field traveling salesman and related problems. Acta Math.
204
91–150.

[33]
Welsh, D. J. A. (1976) Matroid Theory, Academic Press.