Published online by Cambridge University Press: 09 July 2010
In this paper we consider the influences of variables on Boolean functions in general product spaces. Unlike the case of functions on the discrete cube, where there is a clear definition of influence, in the general case several definitions have been presented in different papers. We propose a family of definitions for the influence that contains all the known definitions, as well as other natural definitions, as special cases. We show that the proofs of the BKKKL theorem and of other results can be adapted to our new definition. The adaptation leads to generalizations of these theorems, which are tight in terms of the definition of influence used in the assertion.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.