Skip to main content
×
×
Home

On the Laplacian Eigenvalues of Gn,p

  • AMIN COJA-OGHLAN (a1)
Abstract

We investigate the Laplacian eigenvalues of sparse random graphs Gnp. We show that in the case that the expected degree d = (n-1)p is bounded, the spectral gap of the normalized Laplacian is o(1). Nonetheless, w.h.p. G = Gnp has a large subgraph core(G) such that the spectral gap of is as large as 1-O (d−1/2). We derive similar results regarding the spectrum of the combinatorial Laplacian L(Gnp). The present paper complements the work of Chung, Lu and Vu [8] on the Laplacian spectra of random graphs with given expected degree sequences. Applied to Gnp, their results imply that in the ‘dense’ case d ≥ ln2n the spectral gap of is 1-O (d−1/2) w.h.p.

Copyright
References
Hide All
[1]Alon, N. (1998) Spectral techniques in graph algorithms. In Proc. 3rd LATIN, pp. 206215.
[2]Alon, N. and Kahale, N. (1997) A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26 17331748.
[3]Alon, N., Krivelevich, M. and Sudakov, B. (1998) Finding a large hidden clique in a random graph. Random Struct. Alg. 13 457466.
[4]Bauer, M. and Golinelli, O. (2001) Random incidence matrices: Moments of the spectral density. J. Statist. Phys. 103 301337.
[5]Bollobás, B. (2001) Random Graphs, 2nd edn, Springer.
[6]Boppana, R. (1987) Eigenvalues and graph bisection: An average-case analysis. In Proc. 28th FOCS, pp. 280285.
[7]Chung, F. R. K. (1997) Spectral Graph Theory, AMS.
[8]Chung, F. R. K., Lu, L. and Vu, V. (2003) The spectra of random graphs with given expected degrees. Internet Mathematics 1 257275.
[9]Coja-Oghlan, A. (2005) Spectral techniques, semidefinite programs, and random graphs. Habilitation thesis, Humboldt University, Berlin.
[10]Coja-Oghlan, A. (2006) A spectral heuristic for bisecting random graphs. Random Struct. Alg. 29 351398.
[11]Dasgupta, A., Hopcroft, J. E. and McSherry, F. (2004) Spectral partitioning of random graphs. In Proc. 45th FOCS, pp. 529537.
[12]Donath, W. E. and Hoffman, A. J. (1973) Lower bounds for the partitioning of a graph. IBM J. Res. Develop. 17 420425.
[13]Feige, U. and Ofek, E. (2005) Spectral techniques applied to sparse random graphs. Random Struct. Alg. 27 251275.
[14]Friedman, J. (2003) A proof of Alon's second eigenvalue conjecture. In Proc. 35th STOC, pp. 720724.
[15]Friedman, J., Kahn, J. and Szemerédi, E. (1989) On the second eigenvalue in random regular graphs. In Proc. 21st STOC, pp. 587598.
[16]Füredi, Z. and Komloś, J. (1981) The eigenvalues of random symmetric matrices. Combinatorica 1 233241.
[17]Golub, G. H. and van Loan, C. F. (1996) Matrix Computations, 3rd edn, Johns Hopkins University Press.
[18]Guattery, S. and Miller, G. L. (1998) On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19 701719.
[19]Janson, S. (2005) The first eigenvalue of random graphs. Combin. Probab. Comput. 14 815828.
[20]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.
[21]Khorunzhiy, O., Kirsch, W. and Müller, P. (2005) Lifshits tails for spectra of Erdos–Renyi random graphs. Annals of applied probability 16 (2006) 295309. Preprint: arXiv:math-ph/0502054 v1.
[22]Krivelevich, M. and Sudakov, B. (2003) The largest eigenvalue of sparse random graphs. Combin. Probab. Comput. 12 6172.
[23]Pothen, A., Simon, H. D. and Liou, K.-P. (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 430452.
[24]Schloegel, K., Karypis, G. and Kumar, V. (2000) Graph partitioning for high performance scientific simulations. In CRPC Parallel Computation Handbook (Dongarra, J., Foster, I., Fox, G., Kennedy, K. and White, A., eds), Morgan-Kaufmann.
[25]Vu, V. (2005) Spectral norm of random matrices. In Proc. 37th STOC, pp. 423430.
[26]Wigner, E. P. (1958) On the distribution of the roots of certain symmetric matrices. Ann. of Math. 67 325327.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed