Skip to main content
    • Aa
    • Aa

On the Number of Convex Lattice Polygons

  • Imre Bárány (a1) and János Pach (a2)

We prove that there are at most {cA1/3} different lattice polygons of area A. This improves a result of V. I. Arnol'd.

Hide All
[1]Andrews G. E. (1976) The Theory of Partitions, Addison-Wesley.
[2]Andrews G. E. (1965) A lower bound for the volumes of strictly convex bodies with many boundary points. Trans. Amer. Math. Soc. 106 270279.
[3]Arnol'd V. I. (1980) Statistics of integral lattice polygons (in Russian). Funk. Anal. Pril. 14 13.
[4]Konyagin S. B. and Sevastyanov K. A. (1984) Estimation of the number of vertices of a convex integral polyhedron in terms of its volume. Funk. Anal. Pril. 18 1315.
[5]Rademacher G. (1973) Topics in Analytic Number Theory, Springer.
[6]Rényi A. and Sulanke R. (1933) Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie verw. Gebiete x 37584.
[7]Schmidt W. (1985) Integer points on curves and surfaces. Monatshefte Math. 99 4582.
[8]Szekeres G. (1951) On the theory of partitions. Quarterly J. Math. Oxford, Second Series 2 85108.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 47 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.