[1] Achlioptas, D. and Coja-Oghlan, A. (2008) Algorithmic barriers from phase transitions. In *FOCS '08: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science*, IEEE, pp. 793–802.

[2] Achlioptas, D. and Friedgut, E. (1999) A sharp threshold for *k*-colorability. Random Struct. Alg. 14 63–70.

[3] Achlioptas, D. and Naor, A. (2005) The two possible values of the chromatic number of a random graph. Ann. of Math. 162 1333–1349.

[4] Alon, N. and Krivelevich, M. (1997) The concentration of the chromatic number of random graphs. Combinatorica 17 303–313.

[5] Banks, J., Moore, C., Neeman, J. and Netrapalli, P. (2016) Information-theoretic thresholds for community detection in sparse networks. In COLT: 29th Conference on Learning Theory, MLR Press, pp. 383–416.

[6] Bapst, V., Coja-Oghlan, A. and Efthymiou, C. (2017) Planting colourings silently. Combin. Probab. Comput. 26 338–366.

[7] Bapst, V., Coja-Oghlan, A., Hetterich, S., Raßmann, F. and Vilenchik, D. (2016) The condensation phase transition in random graph coloring. Commun. Math. Phys. 341 543–606.

[8] Bapst, V., Coja-Oghlan, A. and Rassmann, F. (2016) A positive temperature phase transition in random hypergraph 2-colouring. Ann. Appl. Probab. 26 1362–1406.

[9] Bollobás, B. (1988) The chromatic number of random graphs. Combinatorica 8 49–55.

[10] Bollobás, B. (2001) Random Graphs, second edition, Cambridge University Press.

[11] Coja-Oghlan, A. (2013) Upper-bounding the *k*-colorability threshold by counting covers. Electron. J. Combin. 20 P32.

[12] Coja-Oghlan, A., Efthymiou, C. and Hetterich, S. (2016) On the chromatic number of random regular graphs. J. Combin. Theory Ser. B 116 367–439.

[13] Coja-Oghlan, A. and Vilenchik, D. (2013) Chasing the *k*-colorability threshold. In *FOCS: IEEE 54th Annual Symposium on Foundations of Computer Science*, IEEE, pp. 380–389. A full version is available as arXiv:1304.1063.

[14] Coja-Oghlan, A. and Wormald, N. The number of satisfying assignments of random regular *k*-SAT formulas. arXiv:1611.03236

[15] Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 17–61.

[16] Frieze, A. and Karónski, M. (2015) Introduction to Random Graphs, Cambridge University Press.

[17] Janson, S. (1995) Random regular graphs: Asymptotic distributions and contiguity. Combin. Probab. Comput. 4 369–405.

[18] Kemkes, G., Perez-Gimenez, X. and Wormald, N. (2010) On the chromatic number of random *d*-regular graphs. Adv. Math. 223 300–328.

[19] Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G. and Zdeborova, L. (2007) Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl Acad. Sci. 104 10318–10323.

[20] Łuczak, T. (1991) A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11 295–297.

[21] Łuczak, T. (1991) The chromatic number of random graphs. Combinatorica 11 45–54.

[22] Matula, D. (1987) Expose-and-merge exploration and the chromatic number of a random graph. Combinatorica 7 275–284.

[23] Molloy, M. (2012) The freezing threshold for *k*-colourings of a random graph. In STOC: 44th Symposium on Theory of Computing, ACM, pp. 921–930.

[24] Montanari, A., Restrepo, R. and Tetali, P. (2011) Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math. 25 771–808.

[25] Moore, C. (2016) The phase transition in random regular exact cover. Ann. Inst. Henri Poincaré 3 349–362.

[26] Rassmann, F. (2017) The Electronic Journal of Combinatorics 24 (3) #P3.11.

[27] Robinson, R. and Wormald, N. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117–125.

[28] Robinson, R. and Wormald, N. (1994) Almost all regular graphs are Hamiltonian. Random Struct. Alg. 5 363–374.

[29] Shamir, E. and Spencer, J. (1987) Sharp concentration of the chromatic number of random graphs *G*(*n, p*). Combinatorica 7 121–129.

[30] Wormald, N. (1999) Models of random regular graphs. In Surveys in Combinatorics, Vol. 267 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 239–298.