Skip to main content
×
×
Home

On the Number of Solutions in Random Graph k-Colouring

  • FELICIA RASSMANN (a1)
Abstract

Let k ⩾ 3 be a fixed integer. We exactly determine the asymptotic distribution of ln Zk(G(n, m)), where Zk(G(n, m)) is the number of k-colourings of the random graph G(n, m). A crucial observation to this end is that the fluctuations in the number of colourings can be attributed to the fluctuations in the number of small cycles in G(n, m). Our result holds for a wide range of average degrees, and for k exceeding a certain constant k0 it covers all average degrees up to the so-called condensation phase transition.

Copyright
References
Hide All
[1] Achlioptas, D. and Coja-Oghlan, A. (2008) Algorithmic barriers from phase transitions. In FOCS '08: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE, pp. 793–802.
[2] Achlioptas, D. and Friedgut, E. (1999) A sharp threshold for k-colorability. Random Struct. Alg. 14 6370.
[3] Achlioptas, D. and Naor, A. (2005) The two possible values of the chromatic number of a random graph. Ann. of Math. 162 13331349.
[4] Alon, N. and Krivelevich, M. (1997) The concentration of the chromatic number of random graphs. Combinatorica 17 303313.
[5] Banks, J., Moore, C., Neeman, J. and Netrapalli, P. (2016) Information-theoretic thresholds for community detection in sparse networks. In COLT: 29th Conference on Learning Theory, MLR Press, pp. 383416.
[6] Bapst, V., Coja-Oghlan, A. and Efthymiou, C. (2017) Planting colourings silently. Combin. Probab. Comput. 26 338366.
[7] Bapst, V., Coja-Oghlan, A., Hetterich, S., Raßmann, F. and Vilenchik, D. (2016) The condensation phase transition in random graph coloring. Commun. Math. Phys. 341 543606.
[8] Bapst, V., Coja-Oghlan, A. and Rassmann, F. (2016) A positive temperature phase transition in random hypergraph 2-colouring. Ann. Appl. Probab. 26 13621406.
[9] Bollobás, B. (1988) The chromatic number of random graphs. Combinatorica 8 4955.
[10] Bollobás, B. (2001) Random Graphs, second edition, Cambridge University Press.
[11] Coja-Oghlan, A. (2013) Upper-bounding the k-colorability threshold by counting covers. Electron. J. Combin. 20 P32.
[12] Coja-Oghlan, A., Efthymiou, C. and Hetterich, S. (2016) On the chromatic number of random regular graphs. J. Combin. Theory Ser. B 116 367439.
[13] Coja-Oghlan, A. and Vilenchik, D. (2013) Chasing the k-colorability threshold. In FOCS: IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE, pp. 380–389. A full version is available as arXiv:1304.1063.
[14] Coja-Oghlan, A. and Wormald, N. The number of satisfying assignments of random regular k-SAT formulas. arXiv:1611.03236
[15] Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 1761.
[16] Frieze, A. and Karónski, M. (2015) Introduction to Random Graphs, Cambridge University Press.
[17] Janson, S. (1995) Random regular graphs: Asymptotic distributions and contiguity. Combin. Probab. Comput. 4 369405.
[18] Kemkes, G., Perez-Gimenez, X. and Wormald, N. (2010) On the chromatic number of random d-regular graphs. Adv. Math. 223 300328.
[19] Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G. and Zdeborova, L. (2007) Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl Acad. Sci. 104 1031810323.
[20] Łuczak, T. (1991) A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11 295297.
[21] Łuczak, T. (1991) The chromatic number of random graphs. Combinatorica 11 4554.
[22] Matula, D. (1987) Expose-and-merge exploration and the chromatic number of a random graph. Combinatorica 7 275284.
[23] Molloy, M. (2012) The freezing threshold for k-colourings of a random graph. In STOC: 44th Symposium on Theory of Computing, ACM, pp. 921930.
[24] Montanari, A., Restrepo, R. and Tetali, P. (2011) Reconstruction and clustering in random constraint satisfaction problems. SIAM J. Discrete Math. 25 771808.
[25] Moore, C. (2016) The phase transition in random regular exact cover. Ann. Inst. Henri Poincaré 3 349362.
[26] Rassmann, F. (2017) The Electronic Journal of Combinatorics 24 (3) #P3.11.
[27] Robinson, R. and Wormald, N. (1992) Almost all cubic graphs are Hamiltonian. Random Struct. Alg. 3 117125.
[28] Robinson, R. and Wormald, N. (1994) Almost all regular graphs are Hamiltonian. Random Struct. Alg. 5 363374.
[29] Shamir, E. and Spencer, J. (1987) Sharp concentration of the chromatic number of random graphs G(n, p). Combinatorica 7 121129.
[30] Wormald, N. (1999) Models of random regular graphs. In Surveys in Combinatorics, Vol. 267 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 239298.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 85 *
Loading metrics...

* Views captured on Cambridge Core between 21st May 2018 - 17th August 2018. This data will be updated every 24 hours.