[1]Achlioptas, D. and Coja-Oghlan, A. (2008) Algorithmic barriers from phase transitions. In *Proc. 49th Annual IEEE Symposium on Foundations of Computer Science*, pp. 793–802.

[2]Achlioptas, D. and Ricci-Tersenghi, F. (2006) On the solution-space geometry of random constraint satisfaction problems. In *Proc. 38th ACM Symposium on Theory of Computing*, pp. 130–139.

[3]Alon, N. and Kahale, N. (1997) A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26 1733–1748.

[4]Alon, N. and Spencer, J. (2000) The Probabilistic Method, 2nd edn, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York.

[5]Ben-Sasson, E., Bilu, Y. and Gutfreund, D. (2002) Finding a randomly planted assignment in a random 3CNF. Manuscript.

[6]Bohman, T., Frieze, A., Martin, R., Ruszinko, M. and Smyth, C. (2007) Randomly generated intersecting hypergraphs II. Random Struct. Alg. 30 17–34.

[7]Chen, H. (2004) An algorithm for SAT above the threshold. In Theory and Applications of Satisfiability Testing: 6th International Conference (SAT 2003), Vol. 2919 of *Lecture Notes in Computer Science*, Springer, pp. 14–24.

[8]Coja-Oghlan, A., Krivelevich, M. and Vilenchik, D. (2007) Why almost all *k*-colorable graphs are easy. In Proc. 24th Symposium on Theoretical Aspects of Computer Science, Vol. 4393 of *Lecture Notes in Computer Science*, Springer, pp. 121–132.

[9]Coja-Oghlan, A., Krivelevich, M. and Vilenchik, D. (2007) Why almost all satisfiable *k*-CNF formulas are easy. In *13th Conference on Analysis of Algorithms: DMTCS Proceedings*, pp. 89–102.

[10]Cook, S. (1971) The complexity of theorem-proving procedures. In *Proc. 3rd ACM Symposium on Theory of Computing*, pp. 151–158.

[11]Erdős, P., Suen, S. and Winkler, P. (1995) On the size of a random maximal graph. Random Struct. Alg. 6 309–318.

[12]Feige, U., Mossel, E. and Vilenchik, D. (2006) Complete convergence of message passing algorithms for some satisfiability problems. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (Proc. RANDOM 2006), Vol. 4110 of *Lecture Notes in Computer Science*, Springer, pp. 339–350.

[13]Feige, U. and Vilenchik, D. (2004) A local search algorithm for 3SAT. Technical report, The Weizmann Institute of Science.

[14]Flaxman, A. (2003) A spectral technique for random satisfiable 3CNF formulas. In *Proc. 14th ACM–SIAM Symposium on Discrete Algorithms*, pp. 357–363.

[15]Friedgut, E. (1999) Sharp thresholds of graph properties, and the *k*-sat problem. J. Amer. Math. Soc. 12 1017–1054.

[16]Gallager, R. (1963) Low-Density Parity-Check Codes, MIT Press, Cambridge.

[17]Gerke, S., Schlatter, D., Steger, A. and Taraz, A. (2008) The random planar graph process. Random Struct. Alg. 32 236–261.

[18]Håstad, J. (2001) Some optimal inapproximability results. J. Assoc. Comput. Mach. 48 798–859.

[19]Krivelevich, M. and Vilenchik, D. (2006) Solving random satisfiable 3CNF formulas in expected polynomial time. In *Proc. 17th ACM–SIAM Symposium on Discrete Algorithms*, pp. 454–463.

[20]Kučera, L. (1977) Expected behavior of graph coloring algorithms. In Proc. Fundamentals of Computation Theory, Vol. 56 of *Lecture Notes in Computer Science*, Springer, Berlin, pp. 447–451.

[21]Lovász, L. (1993) Combinatorial Problems and Exercises, 2nd edn, Elsevier, Amsterdam.

[22]Mezard, M., Mora, T. and Zecchina, R. (2005) Clustering of solutions in the random satisfiability problem. Phys. Review Letters 94 197–205.

[23]Osthus, D. and Taraz, A. (2001) Random maximal *H*-free graphs. Random Struct. Alg. 18 61–82.

[24]Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Francisco, CA, USA.

[25]Ruciński, A. and Wormald, N. (1992) Random graph processes with degree restrictions. Combin. Probab. Comput. 1 169–180.