Skip to main content

On Zeros of a Polynomial in a Finite Grid


A 1993 result of Alon and Füredi gives a sharp upper bound on the number of zeros of a multivariate polynomial over an integral domain in a finite grid, in terms of the degree of the polynomial. This result was recently generalized to polynomials over an arbitrary commutative ring, assuming a certain ‘Condition (D)’ on the grid which holds vacuously when the ring is a domain. In the first half of this paper we give a further generalized Alon–Füredi theorem which provides a sharp upper bound when the degrees of the polynomial in each variable are also taken into account. This yields in particular a new proof of Alon–Füredi. We then discuss the relationship between Alon–Füredi and results of DeMillo–Lipton, Schwartz and Zippel. A direct coding theoretic interpretation of Alon–Füredi theorem and its generalization in terms of Reed–Muller-type affine variety codes is shown, which gives us the minimum Hamming distance of these codes. Then we apply the Alon–Füredi theorem to quickly recover – and sometimes strengthen – old and new results in finite geometry, including the Jamison–Brouwer–Schrijver bound on affine blocking sets. We end with a discussion of multiplicity enhancements.

Hide All
[1] Alon, N. and Füredi, Z. (1993) Covering the cube by affine hyperplanes. European J. Combin. 14 7983.
[2] Alon, N. and Tarsi, M. (1992) Colorings and orientations of graphs. Combinatorica 12 125134.
[3] Ball, S. and Serra, O. (2009) Punctured combinatorial Nullstellensätze. Combinatorica 29 511522.
[4] Ball, S. and Serra, O. (2011) Erratum: Punctured combinatorial Nullstellensätze. Combinatorica 31 377378.
[5] Bishnoi, A., Clark, P. L., Potukuchi, A. and Schmitt, J. R. (2017) On zeros of a polynomial in a finite grid. arXiv:1508.06020v2
[6] Blokhuis, A. and Brouwer, A. E. (1986) Blocking sets in Desarguesian projective planes. Bull. London Math. Soc. 18 132134.
[7] Blokhuis, A., Sziklai, P. and Szőnyi, T. (2011) Blocking sets in projective spaces. In Current Research Topics in Galois Geometry (De Beule, J. and Storme, L., eds), Nova Academic, pp. 6184.
[8] Brouwer, A. E. and Schrijver, A. (1978) The blocking number of an affine space. J. Combin. Theory Ser. A 24 251253.
[9] Carvalho, C. (2013) On the second Hamming weight of some Reed–Muller type codes. Finite Fields Appl. 24 8894.
[10] Chevalley, C. (1935) Démonstration d'une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 7375.
[11] Clark, P. L. (2012) Covering numbers in linear algebra. Amer. Math. Monthly 119 6567.
[12] Clark, P. L. (2014) The combinatorial Nullstellensätze revisited. Electron. J. Combin. 21 #P4.15.
[13] Clark, P. L. Fattening up Warning's second theorem. arXiv:1506.06743
[14] Clark, P. L., Forrow, A. and Schmitt, J. R. (2017) Warning's second theorem with restricted variables. Combinatorica 37 397417.
[15] Delsarte, P., Goethals, J.-M. and MacWilliams, F. J. (1970) On generalized Reed–Muller codes and their relatives. Inform. Control 16 403442.
[16] DeMillo, R. A. and Lipton, R. (1978) A probabilistic remark on algebraic program testing. Inform. Process. Lett. 7 193195.
[17] Dodunekov, S., Storme, L. and Van de Voorde, G. (2010) Partial covers of PG(n, q). European J. Combin. 31 16111616.
[18] Dvir, Z., Kopparty, S., Saraf, S. and Sudan, M. (2013) Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM J. Comput. 42 23052328.
[19] Geil, O. (2008) On the second weight of generalized Reed–Muller codes. Des. Codes Cryptogr. 48 323330.
[20] Geil, O. and Thomsen, C. (2013) Weighted Reed–Muller codes revisited. Des. Codes Cryptogr. 66 195220.
[21] Geil, O. and Thomsen, C. (2017) More results on the number of zeros of multiplicity at least r, Discrete Mathematics, 79, 384410.
[22] Hasse, H. (1936) Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175 5054.
[23] Jamison, R. E. (1977) Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22 253266.
[24] Kasami, T., Lin, S. and Peterson, W. W. (1968) Generalized Reed–Muller codes. Electron. Commun. Japan 51 96104.
[25] van Lint, J. H. (1999) Introduction to Coding Theory, third edition, Vol. 86 of Graduate Texts in Mathematics, Springer.
[26] Lipton, R. The curious history of the Schwartz–Zippel lemma.
[27] López, H. H., Renterá-Márquez, C. and Villarreal, R. H. (2014) Affine Cartesian codes. Des. Codes Cryptogr. 71 519.
[28] Metsch, K. (2006) How many s-subspaces must miss a point set in PG(d, q). J. Geom. 86 154164.
[29] Muller, D. (1954) Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electronic Computers EC–3 (3) 612.
[30] Ore, Ö. (1922) Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I #7.
[31] Reed, I. S. (1954) A class of multiple-error-correcting codes and the decoding scheme. IRE Trans. Information Theory PGIT–4 3849.
[32] Schauz, U. (2008) Algebraically solvable problems: Describing polynomials as equivalent to explicit solutions. Electron. J. Combin. 15 #R10.
[33] Schwartz, J. T. (1980) Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27 701717.
[34] Warning, E. (1935) Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11 7683.
[35] Zippel, R. (1979) Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM 79, Vol. 72 of Lecture Notes in Computer Science, Springer, pp. 216226.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed