[1] Alon, N. and Füredi, Z. (1993) Covering the cube by affine hyperplanes. European J. Combin. 14 79–83.

[2] Alon, N. and Tarsi, M. (1992) Colorings and orientations of graphs. Combinatorica 12 125–134.

[3] Ball, S. and Serra, O. (2009) Punctured combinatorial Nullstellensätze. Combinatorica 29 511–522.

[4] Ball, S. and Serra, O. (2011) Erratum: Punctured combinatorial Nullstellensätze. Combinatorica 31 377–378.

[5] Bishnoi, A., Clark, P. L., Potukuchi, A. and Schmitt, J. R. (2017) On zeros of a polynomial in a finite grid. arXiv:1508.06020v2

[6] Blokhuis, A. and Brouwer, A. E. (1986) Blocking sets in Desarguesian projective planes. Bull. London Math. Soc. 18 132–134.

[7] Blokhuis, A., Sziklai, P. and Szőnyi, T. (2011) Blocking sets in projective spaces. In Current Research Topics in Galois Geometry (De Beule, J. and Storme, L., eds), Nova Academic, pp. 61–84.

[8] Brouwer, A. E. and Schrijver, A. (1978) The blocking number of an affine space. J. Combin. Theory Ser. A 24 251–253.

[9] Carvalho, C. (2013) On the second Hamming weight of some Reed–Muller type codes. Finite Fields Appl. 24 88–94.

[10] Chevalley, C. (1935) Démonstration d'une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 73–75.

[11] Clark, P. L. (2012) Covering numbers in linear algebra. Amer. Math. Monthly 119 65–67.

[12] Clark, P. L. (2014) The combinatorial Nullstellensätze revisited. Electron. J. Combin. 21 #P4.15.

[13] Clark, P. L. Fattening up Warning's second theorem. arXiv:1506.06743

[14] Clark, P. L., Forrow, A. and Schmitt, J. R. (2017) Warning's second theorem with restricted variables. Combinatorica 37 397–417.

[15] Delsarte, P., Goethals, J.-M. and MacWilliams, F. J. (1970) On generalized Reed–Muller codes and their relatives. Inform. Control 16 403–442.

[16] DeMillo, R. A. and Lipton, R. (1978) A probabilistic remark on algebraic program testing. Inform. Process. Lett. 7 193–195.

[17] Dodunekov, S., Storme, L. and Van de Voorde, G. (2010) Partial covers of PG(*n, q*). European J. Combin. 31 1611–1616.

[18] Dvir, Z., Kopparty, S., Saraf, S. and Sudan, M. (2013) Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM J. Comput. 42 2305–2328.

[19] Geil, O. (2008) On the second weight of generalized Reed–Muller codes. Des. Codes Cryptogr. 48 323–330.

[20] Geil, O. and Thomsen, C. (2013) Weighted Reed–Muller codes revisited. Des. Codes Cryptogr. 66 195–220.

[21] Geil, O. and Thomsen, C. (2017) More results on the number of zeros of multiplicity at least r, Discrete Mathematics, 79, 384–410.

[22] Hasse, H. (1936) Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175 50–54.

[23] Jamison, R. E. (1977) Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22 253–266.

[24] Kasami, T., Lin, S. and Peterson, W. W. (1968) Generalized Reed–Muller codes. Electron. Commun. Japan 51 96–104.

[25] van Lint, J. H. (1999) Introduction to Coding Theory, third edition, Vol. 86 of Graduate Texts in Mathematics, Springer.

[27] López, H. H., Renterá-Márquez, C. and Villarreal, R. H. (2014) Affine Cartesian codes. Des. Codes Cryptogr. 71 5–19.

[28] Metsch, K. (2006) How many *s*-subspaces must miss a point set in PG(*d, q*). J. Geom. 86 154–164.

[29] Muller, D. (1954) Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electronic Computers EC–3 (3) 6–12.

[30] Ore, Ö. (1922) Über höhere Kongruenzen. *Norsk Mat. Forenings Skrifter Ser. I* #7.

[31] Reed, I. S. (1954) A class of multiple-error-correcting codes and the decoding scheme. IRE Trans. Information Theory PGIT–4 38–49.

[32] Schauz, U. (2008) Algebraically solvable problems: Describing polynomials as equivalent to explicit solutions. Electron. J. Combin. 15 #R10.

[33] Schwartz, J. T. (1980) Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27 701–717.

[34] Warning, E. (1935) Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11 76–83.

[35] Zippel, R. (1979) Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM 79, Vol. 72 of Lecture Notes in Computer Science, Springer, pp. 216–226.