[1]Alekseev, V. E. (1993) Range of values of entropy of hereditary classes of graphs. Discrete Math. Appl. 3 191–199.

[2]Alon, N., Balogh, J., Bollobás, B. and Morris, R. (2011) The structure of almost all graphs in a hereditary property. J. Combin. Theory Ser. B 101 85–110.

[3]Alon, N., Fischer, E., Krivelevich, M. and Szegedy, M. (2000) Efficient testing of large graphs. Combinatorica 20 451–476.

[4]Alon, N. and Shapira, A. (2008) A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37 1703–1727.

[5]Balogh, J., Bollobás, B. and Simonovits, M. (2004) The number of graphs without forbidden subgraphs. J. Combin. Theory Ser. B 91 1–24.

[6]Bollobás, B. and Thomason, A. (1997) Hereditary and monotone properties of graphs. In The Mathematics of Paul Erdös II (Graham, R. L. and Nešetřil, J., eds), Vol. 14 of *Algorithms and Combinatorics*, Springer, pp. 70–78.

[7]Bollobás, B. and Thomason, A. (2000) The structure of hereditary properties and colourings of random graphs. Combinatorica 20 173–202.

[8]Chudnovsky, M., Robertson, N., Seymour, P. and Thomas, R. (2006) The strong perfect graph theorem. Ann. Math. 164 51–229.

[9]Erdős, P., Frankl, P. and Rödl, V. (1986) The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2 113–121.

[10]Erdős, P. and Hajnal, A. (1989) Ramsey-type theorems. Discrete Appl. Math. 25 37–52.

[11]Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 1087–1091.

[12]Gyárfás, A. (1997) Reflections on a problem of Erdős and Hajnal. In The Mathematics of Paul Erdős II (Graham, R. L. and Nešetřil, J., eds), Vol. 14 of *Algorithms and Combinatorics*, Springer, pp. 93–98.

[13]Hardy, G. H., Littlewood, J. E. and Pólya, G. (1988) Inequalities, Cambridge Mathematical Library, Cambridge University Press, reprint of the 1952 edition.

[14]Jukna, S. (2001) Extremal Combinatorics, Springer.

[15]Komlós, J., Shokoufandeh, A., Simonovits, M. and Szemerédi, E. (2000) The regularity lemma and its applications in graph theory. In Theoretical Aspects of Computer Science (Khosrovshahi, G. B., Shokoufandeh, A. and Shokrollahi, M. A., eds), Vol. 2292 of *Lecture Notes in Computer Science*, Springer, pp. 84–112.

[16]Loebl, M., Reed, B., Scott, A., Thomason, A. and Thomassé, S. (2010) Almost all *F*-free graphs have the Erdős–Hajnal property. In An Irregular Mind, Vol. 21 of *Bolyai Society Mathematical Studies*, Springer, pp. 405–414.

[17]Marchant, E. and Thomason, A. (2011) The structure of hereditary properties and 2-coloured multigraphs. Combinatorica 31 85–93.

[18]Prömel, H. J. and Steger, A. (1991) Excluding induced subgraphs: Quadrilaterals. Random Struct. Alg. 2 55–72.

[19]Prömel, H. J. and Steger, A. (1992) Almost all {B}erge graphs are perfect. Combin. Probab. Comput. 1 53–79.

[20]Prömel, H. J. and Steger, A. (1992) Excluding induced subgraphs III: A general asymptotic. Random Struct. Alg. 3 19–31.

[21]Szemerédi, E. (1975) On sets of integers containing no *k* elements in arithmetic progression. Acta Arithmetica 27 199–245.

[22]Thomason, A. (2011) Graphs, colours, weights and hereditary properties. In Surveys in Combinatorics 2011, Vol. 392 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 333–364.

[23]Turán, P. (1941) On an extremal problem in graph theory. Matematicko Fizicki Lapok 48 436–452.