[1] Allen, P., Brightwell, G. and Skokan, J. (2013) Ramsey-goodness and otherwise. Combinatorica 33 125–160.

[2] Burr, S. (1981) Ramsey numbers involving graphs with long suspended paths. J. London Math. Soc. 24 405–413.

[3] Burr, S. and Erdős, P. (1983) Generalizations of a Ramsey-theoretic result of Chvátal. J. Graph Theory 7 39–51.

[4] Chung, F. R. K.. (1990) Separator theorems and their applications. In Paths, Flows, and VLSILayout, (Korte, B., Lovasz, L., Promel, H. J., and Schriver, A., eds), Springer-Verlag, New York, pp. 17–34.

[5] Chvátal, V. (1977) Tree-complete graph Ramsey number. J. Graph Theory 1 93.

[6] Conlon, D., Fox, J., Lee, C. and Sudakov, B. (2016) Ramsey numbers of cubes versus cliques. Combinatorica 36 37–70.

[7] Erdős, P. (1947) Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 292–294.

[8] Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1984) Tree-multipartite graph Ramsey numbers. In Graph Theory and Combinatorics: A Volume in Honor of Paul Erdős (Bollobás, B., ed.), Academic Press, pp. 155–160.

[9] Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1985) Multipartite graph-sparse graph Ramsey numbers. Combinatorica 5 311–318.

[10] Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1989) Multipartite graph-tree graph Ramsey numbers. Ann. NY Acad. Sci. 576 146–154.

[11] Erdős, P. and Szekeres, G. (1947) Some remarks on the theory of graphs. Bull. Amer. Math. Soc. 53 292–294.

[12] Fiz Pontiveros, G., Griffiths, S., Morris, R., Saxton, D. and Skokan, J. (2014) The Ramsey number of the clique and the hypercube. J. London Math. Soc. 89 680–702.

[13] Friedman, J. and Pippenger, N. (1987) Expanding graphs contain all small trees. Combinatorica 7 71–76.

[14] Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L. e al., eds), Springer, pp. 169–264.

[15] Haxell, P. (2001) Tree embeddings. J. Graph Theory 36 121–130.

[16] Krivelevich, M. (2010) Embedding spanning trees in random graphs. SIAM J. Discrete Math. 24 1495–1500.

[17] Montgomery, R. (2014) Embedding bounded degree spanning trees in random graphs. arXiv:1405.6559

[18] Nikiforov, V. (2005) The cycle-complete graph Ramsey numbers. Combin. Probab. Comput. 14 349–370.

[19] Nikiforov, V. and Rousseau, C. (2009) Ramsey goodness and beyond. Combinatorica 29 227–262.

[20] Pokrovskiy, A. and Sudakov, B. (2017) Ramsey goodness of paths. J. Combin. Theory Ser. B 122 384–390.

[21] Pokrovskiy, A. and Sudakov, B. Ramsey goodness of cycles. Preprint.

[22] Wilson, R. J. (1996) Introduction to Graph Theory, fourth edition, Longman.