[1]
Allen, P., Brightwell, G. and Skokan, J. (2013) Ramsey-goodness and otherwise. Combinatorica
33
125–160.

[2]
Burr, S. (1981) Ramsey numbers involving graphs with long suspended paths. J. London Math. Soc.
24
405–413.

[3]
Burr, S. and Erdős, P. (1983) Generalizations of a Ramsey-theoretic result of Chvátal. J. Graph Theory
7
39–51.

[4]
Chung, F. R. K.. (1990) Separator theorems and their applications. In Paths, Flows, and VLSILayout, (Korte, B., Lovasz, L., Promel, H. J., and Schriver, A., eds), Springer-Verlag, New York, pp. 17–34.

[5]
Chvátal, V. (1977) Tree-complete graph Ramsey number. J. Graph Theory
1
93.

[6]
Conlon, D., Fox, J., Lee, C. and Sudakov, B. (2016) Ramsey numbers of cubes versus cliques. Combinatorica
36
37–70.

[7]
Erdős, P. (1947) Some remarks on the theory of graphs. Bull. Amer. Math. Soc.
53
292–294.

[8]
Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1984) Tree-multipartite graph Ramsey numbers. In Graph Theory and Combinatorics: A Volume in Honor of Paul Erdős (Bollobás, B., ed.), Academic Press, pp. 155–160.

[9]
Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1985) Multipartite graph-sparse graph Ramsey numbers. Combinatorica
5
311–318.

[10]
Erdős, P., Faudree, R., Rousseau, C. and Schelp, R. (1989) Multipartite graph-tree graph Ramsey numbers. Ann. NY Acad. Sci.
576
146–154.

[11]
Erdős, P. and Szekeres, G. (1947) Some remarks on the theory of graphs. Bull. Amer. Math. Soc.
53
292–294.

[12]
Fiz Pontiveros, G., Griffiths, S., Morris, R., Saxton, D. and Skokan, J. (2014) The Ramsey number of the clique and the hypercube. J. London Math. Soc.
89
680–702.

[13]
Friedman, J. and Pippenger, N. (1987) Expanding graphs contain all small trees. Combinatorica
7
71–76.

[14]
Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial (Lovász, L.
e al., eds), Springer, pp. 169–264.

[15]
Haxell, P. (2001) Tree embeddings. J. Graph Theory
36
121–130.

[16]
Krivelevich, M. (2010) Embedding spanning trees in random graphs. SIAM J. Discrete Math.
24
1495–1500.

[17]
Montgomery, R. (2014) Embedding bounded degree spanning trees in random graphs. arXiv:1405.6559

[18]
Nikiforov, V. (2005) The cycle-complete graph Ramsey numbers. Combin. Probab. Comput.
14
349–370.

[19]
Nikiforov, V. and Rousseau, C. (2009) Ramsey goodness and beyond. Combinatorica
29
227–262.

[20]
Pokrovskiy, A. and Sudakov, B. (2017) Ramsey goodness of paths. J. Combin. Theory Ser. B
122
384–390.

[21]
Pokrovskiy, A. and Sudakov, B. Ramsey goodness of cycles. Preprint.

[22]
Wilson, R. J. (1996) Introduction to Graph Theory, fourth edition, Longman.