[1]
Chiba, S., Fujita, S., Kawarabayashi, K.-I. and Sakuma, T. (2014) Minimum degree conditions for vertex-disjoint even cycles in large graphs. Adv. Appl. Math.
54
105–120.

[2]
Corrádi, K. and Hajnal, A. (1963) On the maximal number of independent circuits in a graph. Acta Math. Hungar.
14
423–439.

[3]
Dirac, G. (1963) Some results concerning the structure of graphs. Canad. Math. Bull.
6
183–210.

[4]
Dirac, G. and Erdős, P. (1963) On the maximal number of independent circuits in a graph. Acta Math. Hungar.
14
79–94.

[5]
Enomoto, H. (1998) On the existence of disjoint cycles in a graph. Combinatorica
18
487–492.

[6]
Erdős, P. (1989) On some aspects of my work with Gabriel Dirac. Ann. Discrete Math.
41
111–116.

[7]
Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P. Erdős. In *Combinatorial Theory and its Applications II (Proc. Colloq., Balatonfüred, 1969)*, North-Holland, pp. 601–623.

[8]
Kierstead, H. and Kostochka, A. (2008) An Ore-type theorem on equitable coloring. J. Combin. Theory Ser. B
98
226–234.

[9]
Kierstead, H. and Kostochka, A. (2015) A refinement of a result of Corrádi and Hajnal. Combinatorica
35
497–512.

[10]
Kierstead, H., Kostochka, A. and McConvey, A. (2017) Strengthening theorems of Dirac and Erdős on disjoint cycles. J. Graph Theory
85
788–802.

[11]
Kierstead, H., Kostochka, A., Molla, T. and Yeager, E. (2017) Sharpening an Ore-type version of the Corrádi–Hajnal theorem. Abh. Math. Semin. Univ. Hambg.
87
299–335.

[12]
Kierstead, H., Kostochka, A. and Yeager, E. (2017) On the Corrádi–Hajnal theorem and a question of Dirac. J. Combin. Theory Ser. B
122
121–148.

[13]
Wang, H. (1999) On the maximum number of independent cycles in a graph. Discrete Math.
205
183–190.