Skip to main content Accessibility help

Simplifying Inclusion–Exclusion Formulas



Let $\mathcal{F}$ = {F1, F2,. . ., Fn} be a family of n sets on a ground set S, such as a family of balls in ℝd. For every finite measure μ on S, such that the sets of $\mathcal{F}$ are measurable, the classical inclusion–exclusion formula asserts that

$\[\mu(F_1\cup F_2\cup\cdots\cup F_n)=\sum_{I:\emptyset\ne I\subseteq[n]} (-1)^{|I|+1}\mu\biggl(\bigcap_{i\in I} F_i\biggr),\]$
that is, the measure of the union is expressed using measures of various intersections. The number of terms in this formula is exponential in n, and a significant amount of research, originating in applied areas, has been devoted to constructing simpler formulas for particular families $\mathcal{F}$ . We provide an upper bound valid for an arbitrary $\mathcal{F}$ : we show that every system $\mathcal{F}$ of n sets with m non-empty fields in the Venn diagram admits an inclusion–exclusion formula with mO(log2n) terms and with ±1 coefficients, and that such a formula can be computed in mO(log2n) expected time. For every ϵ > 0 we also construct systems with Venn diagram of size m for which every valid inclusion–exclusion formula has the sum of absolute values of the coefficients at least Ω(m2−ϵ).



Hide All
[1]Attali, D. and Edelsbrunner, H. (2007) Inclusion–exclusion formulas from independent complexes. Discrete Comput. Geom. 37 5977.
[2]Björklund, A., Husfeldt, T., Kaski, P. and Koivisto, M. (2008) The travelling salesman problem in bounded degree graphs. In Automata, Languages and Programming I, Vol. 5125 of Lecture Notes in Computer Science, Springer, pp. 198209.
[3]Björklund, A., Husfeldt, T. and Koivisto, M. (2009) Set partitioning via inclusion–exclusion. SIAM J. Comput. 39 546563.
[4]Bonferroni, C. E. (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze 8 162.
[5]Cohn, H. (2004) Projective geometry over $\mathbb F_1$ and the Gaussian binomial coefficients. Amer. Math. Monthly 111 487495.
[6]Dohmen, K. (2003) Improved Bonferroni Inequalities via Abstract Tubes, Vol. 1826 of Lecture Notes in Mathematics, Springer.
[7]Edelsbrunner, H. and Ramos, E. A. (1997) Inclusion–exclusion complexes for pseudodisk collections. Discrete Comput. Geom. 17 287306.
[8]Galambos, J. (1996) Bonferroni-Type Inequalities with Applications, Springer.
[9]Hatcher, A. (2001) Algebraic Topology, Cambridge University Press.
[10]Hoffmann, M., Okamoto, Y., Ruiz-Vargas, A., Scheder, D. and Solymosi, J. (2012) Solution to GWOP problem 17 ‘A Regional Oracle’. Oral presentation, Tenth Gremo Workshop on Open Problems, Bergün (GR), Switzerland.
[11]Kahn, J., Linial, N. and Samorodnitsky, A. (1996) Inclusion–exclusion: Exact and approximate. Combinatorica 16 465477.
[12]Knuth, D. E. (1997) The Art of Computer Programming 2, Addison-Wesley.
[13]Kratky, K. W. (1978) The area of intersection of n equal circular disks. J. Phys. A 11 10171024.
[14]Linial, N. and Nisan, N. (1990) Approximate inclusion–exclusion. Combinatorica 10 349365.
[15]Matoušek, J. (2003) Using the Borsuk–Ulam Theorem, Universitext, Springer.
[16]Munkres, J. R. (1984) Elements of Algebraic Topology, Addison-Wesley.
[17]Naiman, D. Q. and Wynn, H. P. (1992) Inclusion–exclusion–Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 4376.
[18]Naiman, D. Q. and Wynn, H. P. (1997) Abstract tubes, improved inclusion–exclusion identities and inequalities and importance sampling. Ann. Statist. 25 19541983.
[19]Nederlof, J. and van Rooij, J. M. M. (2010) Inclusion/exclusion branching for partial dominating set and set splitting. In Parameterized and Exact Computation, Vol. 6478 of Lecture Notes in Computer Science, Springer, pp. 204215.
[20]Pólya, G. and Alexanderson, G. L. (1971) Gaussian binomial coefficients. Elem. Math. 26 102109.
[21]Perrot, G., Cheng, B., Gibson, K. D., Vila, J., Palmer, K. A., Nayeem, A., Maigret, B. and Scheraga, H. A. (1992) MSEED: A program for the rapid analytical determination of accessible surface areas and their derivatives. J. Comput. Chem. 13 111.
[22]van Rooij, J. M. M., Nederlof, J. and van Dijk, T. C. (2009) Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets. In Algorithms: ESA 2009, Vol. 5757 of Lecture Notes in Computer Science, Springer, pp. 554565.
[23]Stanley, R. P. (1997) Enumerative Combinatorics 1, Vol. 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press. Corrected reprint of the 1986 original.
[24]Yang, A. Y., Ganesh, A., Zhou, Z., Sastry, S. S. and Ma, Y. (2010) Fast L1-Minimization algorithms for robust face recognition. arXiv:1007.3753



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed