[1]Attali, D. and Edelsbrunner, H. (2007) Inclusion–exclusion formulas from independent complexes. Discrete Comput. Geom. 37 59–77.

[2]Björklund, A., Husfeldt, T., Kaski, P. and Koivisto, M. (2008) The travelling salesman problem in bounded degree graphs. In Automata, Languages and Programming I, Vol. 5125 of *Lecture Notes in Computer Science*, Springer, pp. 198–209.

[3]Björklund, A., Husfeldt, T. and Koivisto, M. (2009) Set partitioning via inclusion–exclusion. SIAM J. Comput. 39 546–563.

[4]Bonferroni, C. E. (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubbl. d. R. Ist. Super. di Sci. Econom. e Commerciali di Firenze 8 1–62.

[5]Cohn, H. (2004) Projective geometry over $\mathbb F_1$ and the Gaussian binomial coefficients. Amer. Math. Monthly 111 487–495. [6]Dohmen, K. (2003) Improved Bonferroni Inequalities via Abstract Tubes, Vol. 1826 of Lecture Notes in Mathematics, Springer.

[7]Edelsbrunner, H. and Ramos, E. A. (1997) Inclusion–exclusion complexes for pseudodisk collections. Discrete Comput. Geom. 17 287–306.

[8]Galambos, J. (1996) Bonferroni-Type Inequalities with Applications, Springer.

[9]Hatcher, A. (2001) Algebraic Topology, Cambridge University Press.

[10]Hoffmann, M., Okamoto, Y., Ruiz-Vargas, A., Scheder, D. and Solymosi, J. (2012) Solution to GWOP problem 17 ‘A Regional Oracle’. Oral presentation, *Tenth Gremo Workshop on Open Problems*, Bergün (GR), Switzerland.

[11]Kahn, J., Linial, N. and Samorodnitsky, A. (1996) Inclusion–exclusion: Exact and approximate. Combinatorica 16 465–477.

[12]Knuth, D. E. (1997) The Art of Computer Programming 2, Addison-Wesley.

[13]Kratky, K. W. (1978) The area of intersection of *n* equal circular disks. J. Phys. A 11 1017–1024.

[14]Linial, N. and Nisan, N. (1990) Approximate inclusion–exclusion. Combinatorica 10 349–365.

[15]Matoušek, J. (2003) Using the Borsuk–Ulam Theorem, Universitext, Springer.

[16]Munkres, J. R. (1984) Elements of Algebraic Topology, Addison-Wesley.

[17]Naiman, D. Q. and Wynn, H. P. (1992) Inclusion–exclusion–Bonferroni identities and inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 43–76.

[18]Naiman, D. Q. and Wynn, H. P. (1997) Abstract tubes, improved inclusion–exclusion identities and inequalities and importance sampling. Ann. Statist. 25 1954–1983.

[19]Nederlof, J. and van Rooij, J. M. M. (2010) Inclusion/exclusion branching for partial dominating set and set splitting. In *Parameterized and Exact Computation*, Vol. 6478 of Lecture Notes in Computer Science, Springer, pp. 204–215.

[20]Pólya, G. and Alexanderson, G. L. (1971) Gaussian binomial coefficients. Elem. Math. 26 102–109.

[21]Perrot, G., Cheng, B., Gibson, K. D., Vila, J., Palmer, K. A., Nayeem, A., Maigret, B. and Scheraga, H. A. (1992) MSEED: A program for the rapid analytical determination of accessible surface areas and their derivatives. J. Comput. Chem. 13 1–11.

[22]van Rooij, J. M. M., Nederlof, J. and van Dijk, T. C. (2009) Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets. In Algorithms: ESA 2009, Vol. 5757 of Lecture Notes in Computer Science, Springer, pp. 554–565.

[23]Stanley, R. P. (1997) Enumerative Combinatorics 1, Vol. 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press. Corrected reprint of the 1986 original.

[24]Yang, A. Y., Ganesh, A., Zhou, Z., Sastry, S. S. and Ma, Y. (2010) Fast L1-Minimization algorithms for robust face recognition. arXiv:1007.3753