Published online by Cambridge University Press: 01 September 1998
Given a sequence of nonnegative real numbers λ0, λ1, … that sum to 1, we consider a random graph having approximately λin vertices of degree i. In [12] the authors essentially show that if [sum ]i(i−2)λi>0 then the graph a.s. has a giant component, while if [sum ]i(i−2)λi<0 then a.s. all components in the graph are small. In this paper we analyse the size of the giant component in the former case, and the structure of the graph formed by deleting that component. We determine ε, λ′0, λ′1 … such that a.s. the giant component, C, has εn+o(n) vertices, and the structure of the graph remaining after deleting C is basically that of a random graph with n′=n−[mid ]C[mid ] vertices, and with λ′in′ of them of degree i.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.