Skip to main content
    • Aa
    • Aa

Solving Sparse Random Instances of Max Cut and Max 2-CSP in Linear Expected Time


We show that a maximum cut of a random graph below the giant-component threshold can be found in linear space and linear expected time by a simple algorithm. In fact, the algorithm solves a more general class of problems, namely binary 2-variable constraint satisfaction problems. In addition to Max Cut, such Max 2-CSPs encompass Max Dicut, Max 2-Lin, Max 2-Sat, Max-Ones-2-Sat, maximum independent set, and minimum vertex cover. We show that if a Max 2-CSP instance has an ‘underlying’ graph which is a random graph $G \in \mathcal{G}(n,c/n)$, then the instance is solved in linear expected time if $c \leq 1$. Moreover, for arbitrary values (or functions) $c>1$ an instance is solved in expected time $n \exp(O(1+(c-1)^3 n))$; in the ‘scaling window’ $c=1+\lambda n^{-1/3}$ with $\lambda$ fixed, this expected time remains linear.

Our method is to show, first, that if a Max 2-CSP has a connected underlying graph with $n$ vertices and $m$ edges, then $O(n 2^{(m-n)/2})$ is a deterministic upper bound on the solution time. Then, analysing the tails of the distribution of this quantity for a component of a random graph yields our result. Towards this end we derive some useful properties of binomial distributions and simple random walks.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 41 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.