Published online by Cambridge University Press: 20 May 2003
It is known that random $k$-Sat instances with at least $(2^k \cdot \ln 2)\cdot n$ random clauses are unsatisfiable with high probability. This result is simply obtained by showing that the expected number of satisfying assignments tends to $0$ when the number of variables $n$ tends to infinity. This proof does not directly provide us with an efficient algorithm certifying the unsatisfiability of a given random formula. Concerning efficient algorithms, it is essentially known that random formulas with $n^\varepsilon \cdot n^{k/2}$ clauses with $k$ literals can be efficiently certified as unsatisfiable. The present paper is the result of trying to lower this bound. We obtain better bounds for some specialized satisfiability problems. These results are based on discrepancy investigations for hypergraphs.
Further, we show that random formulas with a linear number of clauses can be efficiently certified as unsatisfiable in the Not-All-Equal-$3$-Sat sense. A similar result holds for the non-$3$-colourability of random graphs with a linear number of edges. We obtain these results by direct application of approximation algorithms.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.