Skip to main content Accessibility help
×
Home

Three Counter-Examples on Semi-Graphoids

  • RAYMOND HEMMECKE (a1), JASON MORTON (a2), ANNE SHIU (a2), BERND STURMFELS (a2) and OLIVER WIENAND (a3)...

Abstract

Semi-graphoids are combinatorial structures that arise in statistical learning theory. They are equivalent to convex rank tests and to polyhedral fans that coarsen the reflection arrangement of the symmetric group Sn. In this paper we resolve two problems on semi-graphoids posed in Studený's book (2005), and we answer a related question of Postnikov, Reiner and Williams on generalized permutohedra. We also study the semigroup and the toric ideal associated with semi-graphoids.

Copyright

References

Hide All
[1] 4ti2: A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at: http://www.4ti2.de.
[2]Aoki, S., Takemura, A. and Yoshida, R. (2005) Indispensable monomials of toric ideals and Markov bases. In Proc Asian Symposium on Computer Mathematics: ASCM 2005 (S. Pae and H. Park, eds), Korea Institute for Advanced Study, pp. 200–202
[3]Bokowski, J. and Sturmfels, B. (1987) Polytopal and non-polytopal spheres: An algorithmic approach. Israel J. Math. 57 257271.
[4]Bruns, W. and Koch, R. (2001) Computing the integral closure of an affine semigroup. In Effective Methods in Algebraic and Analytic Geometry: Kraków 2000. Univ. Iagel. Acta Math. 39 5970.
[5]Diaconis, P. and Sturmfels, B. (1998) Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 363397.
[6]Eisenbud, D. (1995) Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York.
[7]Gawrilow, E. and Joswig, M. (2000) Polymake: A framework for analyzing convex polytopes. In Polytopes: Combinatorics and Computation (Kalai, G. and Ziegler, G. M., eds), Birkhäuser, pp. 4374.
[8]Geiger, D., Meek, C. and Sturmfels, B. (2006) On the toric algebra of graphical models. Ann. Statist. 34 14631492.
[9]Grayson, D. and Stillman, M. Macaulay2: A software system for research in algebraic geometry. Available at: http://www.math.uiuc.edu/Macaulay2/.
[10]Hemmecke, R., Takemura, A. and Yoshida, R. Computing holes in semi-groups. Preprint available at: math.CO/0607599.
[11]Hirai, H. (2006) Sequences of stellar subdivisions. Preprint.
[12]Matúš, F. (1999) Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput. 8 269276.
[13]Matúš, F. (2003) Conditional probabilities and permutohedron. Ann. Inst. H. Poincaré Probab. Statist. 39 687701.
[14]Matúš, F. (2004) Towards classification of semi-graphoids. Discrete Math. 277 115145.
[15]Miller, E. and Sturmfels, B. (2004) Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Springer, New York.
[16]Morton, J., Pachter, L., Shiu, A., Sturmfels, B. and Wienand, O. (2006) Geometry of rank tests. Probabilistic Graphical Models (PGM 3), Prague 2006. Available at: math.ST/0605173.
[17]Postnikov, A. (2005) Permutohedra, associahedra, and beyond. Preprint available at: math.CO/0507163.
[18]Postnikov, A., Reiner, V. and Williams, L. Faces of simple generalized permutohedra. Preprint available at: math.CO/0609184.
[19]Studený, M. (1994) Structural semigraphoids. Internat. J. General Systems 22 207217.
[20]Studený, M. (2005) Probabilistic Conditional Independence Structures, Springer Series in Information Science and Statistics, Springer, London.
[21]Sturmfels, B. (1996) Gröbner Bases and Convex Polytopes, AMS, Providence.
[22]Ziegler, G. (1998) Lectures on Polytopes. Graduate Texts in Mathematics, Springer, New York.

Three Counter-Examples on Semi-Graphoids

  • RAYMOND HEMMECKE (a1), JASON MORTON (a2), ANNE SHIU (a2), BERND STURMFELS (a2) and OLIVER WIENAND (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed