Skip to main content
    • Aa
    • Aa

The Total External Branch Length of Beta-Coalescents


For 1 < α < 2 we derive the asymptotic distribution of the total length of external branches of a Beta(2 − α, α)-coalescent as the number n of leaves becomes large. It turns out that the fluctuations of the external branch length follow those of τn2−α over the entire parameter regime, where τn denotes the random number of coalescences that bring the n lineages down to one. This is in contrast to the fluctuation behaviour of the total branch length, which exhibits a transition at $\alpha_0 = (1+\sqrt 5)/2$ ([18]).

Hide All

Work partially supported by the DFG Priority Programme SPP 1590 ‘Probabilistic Structures in Evolution’.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] J. Berestycki , N. Berestycki and J. Schweinsberg (2007) Beta-coalescents and continuous stable random trees. Ann. Probab. 35 18351887.

[4] J. Berestycki , N. Berestycki and J. Schweinsberg (2008) Small time properties of Beta-coalescents. Ann. Inst. H. Poincaré 44 214238.

[5] M. Birkner and J. Blath (2008) Computing likelihoods for coalescents with multiple collisions in the infinitely-many-sites model. J. Math. Biology 57 435465.

[6] M. Birkner , J. Blath , M. Capaldo , A. Etheridge , M. Möhle , J. Schweinsberg and A. Wakolbinger (2005) Alpha-stable branching and Beta-coalescents. Electron. J. Probab. 10 303325.

[7] E. Bolthausen and A.-S. Sznitman (1998) On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247276.

[8] E. G. Boom , J. D. G. Boulding and A. T. Beckenbach (1994) Mitochondrial DNA variation in introduced populations of Pacific oyster, Crassostrea gigas, in British Columbia. Canad. J. Fish. Aquat. Sci. 51 16081614.

[9] J.-F. Delmas , J.-S. Dhersin and A. Siri-Jégousse (2008) Asymptotic results on the length of coalescent trees. Ann. Appl. Probab. 18 9971025.

[11] M. Drmota , A. Iksanov , M. Möhle and U. Rösler (2007) Asymptotic results about the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Proc. Appl. 117 14041421.

[12] R. Durrett (2008) Probability Models for DNA Sequence Evolution, second edition, Springer.

[13] B. Eldon and J. Wakeley (2006) Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172 26212633.

[14] A. Gnedin and Y. Yakubovich (2007) On the number of collisions in Λ-coalescents. Electron. J. Probab. 12 15471567.

[15] A. Iksanov and M. Möhle (2007) A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Comm. Probab. 12 2835.

[16] A. Iksanov and M. Möhle (2008) On the number of jumps of random walks with a barrier. Adv. Appl. Probab. 40 206228.

[17] S. Janson and G. Kersting (2011) On the total external length of the Kingman coalescent. Electron. J. Probab. 16 22032218.

[18] G. Kersting (2012) The asymptotic distribution of the length of Beta-coalescent trees. Ann. Appl. Probab. 22 20862107.

[19] J. F. C. Kingman (1982) The coalescent. Stoch. Proc. Appl. 13 235248.

[20] M. Möhle (2010) Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson–Dirichlet coalescent. Stoch. Process. Appl. 120 21592173.

[21] J. Pitman (1999) Coalescents with multiple collisions. Ann. Probab. 27 18701902.

[26] G. A. Watterson (1975) On the number of segregating sites in genetical models without recombination. Theoret. Popul. Biol. 7 256276.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 160 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.