Skip to main content
×
×
Home

Volumes in the Uniform Infinite Planar Triangulation: From Skeletons to Generating Functions

  • LAURENT MÉNARD (a1)
Abstract

We develop a method to compute the generating function of the number of vertices inside certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly combinatorial in flavour and the main tool is the decomposition of the UIPT into layers, called the skeleton decomposition, introduced by Krikun [20]. In particular, we get explicit formulas for the generating functions of the number of vertices inside hulls (or completed metric balls) centred around the root, and the number of vertices inside geodesic slices of these hulls. We also recover known results about the scaling limit of the volume of hulls previously obtained by Curien and Le Gall by studying the peeling process of the UIPT in [17].

Copyright
References
Hide All
[1] Abraham, C. (2016) Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52 575595.
[2] Addario-Berry, L. and Albenque, M. (2017) The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45 (5) 27672825.
[3] Ambjørn, J., Durhuus, B. and Jonsson, T. (1997) Quantum Geometry: A Statistical Field Theory Approach, Cambridge Monographs on Mathematical Physics, Cambridge University Press.
[4] Ambjørn, J. and Watabiki, Y. (1995) Scaling in quantum gravity. Nuclear Phys. B 445 129142.
[5] Angel, O. (2003) Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 935974.
[6] Angel, O. and Curien, N. (2015) Percolations on random maps I: Half-plane models. Ann. Inst. Henri Poincaré Probab. Stat. 51 405431.
[7] Angel, O. and Schramm, O. (2003) Uniform infinite planar triangulations. Comm. Math. Phys. 241 191213.
[8] Benjamini, I. and Curien, N. (2013) Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal. 23 501531.
[9] Bertoin, J., Curien, N. and Kortchemski, I. (2018) Random planar maps and growth fragmentations. Ann. Probab. 46 (1) 207260.
[10] Bettinelli, J., Jacob, E. and Miermont, G. (2014) The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection. Electron. J. Probab. 19 #74.
[11] Bouttier, J., Di Francesco, P. and Guitter, E. (2004) Planar maps as labeled mobiles. Electron. J. Combin. 11 #R69.
[12] Budd, T. (2016) The peeling process of infinite Boltzmann planar maps. Electron. J. Combin. 23 (1) Paper 1.28.
[13] Chassaing, P. and Schaeffer, G. (2004) Random planar lattices and integrated superBrownian excursion. Probab. Theory Rel. Fields 128 161212.
[14] Cori, R. and Vauquelin, B. (1981) Planar maps are well labeled trees. Canad. J. Math. 33 10231042.
[15] Curien, N. (2015) A glimpse of the conformal structure of random planar maps. Comm. Math. Phys. 333 14171463.
[16] Curien, N. and Le Gall, J.-F. (2015) First-passage percolation and local modifications of distances in random triangulations. arXiv:1511.04264
[17] Curien, N. and Le Gall, J.-F. (2017) Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat. 53 (1) 322357.
[18] Curien, N. and Le Gall, J.-F. (2019) The hull process of the Brownian plane. Probab. Theory Rel. Fields 166 (1–2) 147209.
[19] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.
[20] Krikun, M. (2005) Uniform infinite planar triangulation and related time-reversed critical branching process. J. Math. Sci. 131 55205537.
[21] Krikun, M. (2005) Local structure of random quadrangulations. arXiv:math/0512304v2
[22] Le Gall, J.-F. (2013) Uniqueness and universality of the Brownian map. Ann. Probab. 41 28802960.
[23] Le Gall, J.-F. (2014) The Brownian map: A universal limit for random planar maps. In XVIIth International Congress on Mathematical Physics, World Scientific, pp. 420–428.
[24] Ménard, L. and Nolin, P. (2014) Percolation on uniform infinite planar maps. Electron. J. Probab. 19 #79.
[25] Miermont, G. (2013) The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 319401.
[26] Miermont, G. (2014) Aspects of Random Planar Maps, Saint Flour Lecture Notes, in preparation.
[27] Miller, J. and Sheffield, S. (2015) An axiomatic characterization of the Brownian map. arXiv:1506.03806
[28] Richier, L. (2015) Universal aspects of critical percolation on random half-planar maps. Electron. J. Probab. 20 #129.
[29] Schaeffer, G. (1998) Conjugaison d'arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I.
[30] Watabiki, Y. (1995) Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441 119163.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 67 *
Loading metrics...

* Views captured on Cambridge Core between 21st May 2018 - 20th August 2018. This data will be updated every 24 hours.