[1] Abraham, C. (2016) Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52 575–595.

[2] Addario-Berry, L. and Albenque, M. (2017) The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45 (5) 2767–2825.

[3] Ambjørn, J., Durhuus, B. and Jonsson, T. (1997) Quantum Geometry: A Statistical Field Theory Approach, Cambridge Monographs on Mathematical Physics, Cambridge University Press.

[4] Ambjørn, J. and Watabiki, Y. (1995) Scaling in quantum gravity. Nuclear Phys. B 445 129–142.

[5] Angel, O. (2003) Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13 935–974.

[6] Angel, O. and Curien, N. (2015) Percolations on random maps I: Half-plane models. Ann. Inst. Henri Poincaré Probab. Stat. 51 405–431.

[7] Angel, O. and Schramm, O. (2003) Uniform infinite planar triangulations. Comm. Math. Phys. 241 191–213.

[8] Benjamini, I. and Curien, N. (2013) Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points. Geom. Funct. Anal. 23 501–531.

[9] Bertoin, J., Curien, N. and Kortchemski, I. (2018) Random planar maps and growth fragmentations. Ann. Probab. 46 (1) 207–260.

[10] Bettinelli, J., Jacob, E. and Miermont, G. (2014) The scaling limit of uniform random plane maps, *via* the Ambjørn–Budd bijection. Electron. J. Probab. 19 #74.

[11] Bouttier, J., Di Francesco, P. and Guitter, E. (2004) Planar maps as labeled mobiles. Electron. J. Combin. 11 #R69.

[12] Budd, T. (2016) The peeling process of infinite Boltzmann planar maps. Electron. J. Combin. 23 (1) Paper 1.28.

[13] Chassaing, P. and Schaeffer, G. (2004) Random planar lattices and integrated superBrownian excursion. Probab. Theory Rel. Fields 128 161–212.

[14] Cori, R. and Vauquelin, B. (1981) Planar maps are well labeled trees. Canad. J. Math. 33 1023–1042.

[15] Curien, N. (2015) A glimpse of the conformal structure of random planar maps. Comm. Math. Phys. 333 1417–1463.

[16] Curien, N. and Le Gall, J.-F. (2015) First-passage percolation and local modifications of distances in random triangulations. arXiv:1511.04264

[17] Curien, N. and Le Gall, J.-F. (2017) Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat. 53 (1) 322–357.

[18] Curien, N. and Le Gall, J.-F. (2019) The hull process of the Brownian plane. Probab. Theory Rel. Fields 166 (1–2) 147–209.

[19] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.

[20] Krikun, M. (2005) Uniform infinite planar triangulation and related time-reversed critical branching process. J. Math. Sci. 131 5520–5537.

[21] Krikun, M. (2005) Local structure of random quadrangulations. arXiv:math/0512304v2

[22] Le Gall, J.-F. (2013) Uniqueness and universality of the Brownian map. Ann. Probab. 41 2880–2960.

[23] Le Gall, J.-F. (2014) The Brownian map: A universal limit for random planar maps. In *XVIIth International Congress on Mathematical Physics*, World Scientific, pp. 420–428.

[24] Ménard, L. and Nolin, P. (2014) Percolation on uniform infinite planar maps. Electron. J. Probab. 19 #79.

[25] Miermont, G. (2013) The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 319–401.

[26] Miermont, G. (2014) *Aspects of Random Planar Maps*, Saint Flour Lecture Notes, in preparation.

[27] Miller, J. and Sheffield, S. (2015) An axiomatic characterization of the Brownian map. arXiv:1506.03806

[28] Richier, L. (2015) Universal aspects of critical percolation on random half-planar maps. Electron. J. Probab. 20 #129.

[29] Schaeffer, G. (1998) Conjugaison d'arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I.

[30] Watabiki, Y. (1995) Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441 119–163.