[1]Aval, J.-C., Boussicault, A. and Nadeau, P. (2011) Tree-like tableaux. In *23rd International Conference on Formal Power Series and Algebraic Combinatorics: FPSAC 2011*, DMTCS proc. **AO** 63–74.

[2]Barbour, A. D., Holst, L. and Janson, S. (1992) Poisson Approximation. Oxford University Press.

[3]Barbour, A. and Janson, S. (2009) A functional combinatorial central limit theorem. Electron. J. Probab. 14, #81, 2352–2370.

[4]Bernstein, S. (1940) Nouvelles applications des grandeurs aléatoires presqu'indépendantes (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 4 137–150.

[5]Bernstein, S. (1940) Sur un problème du schéma des urnes à composition variable. CR (Doklady) Acad. Sci. URSS (NS) 28 5–7.

[6]Brenti, F. (1994) *q*-Eulerian polynomials arising from Coxeter groups. European J. Combin. 15 417–441.

[7]Carlitz, L. (1959) Eulerian numbers and polynomials. Mathematics Magazine 32 247–260.

[8]Carlitz, L., Kurtz, D. C., Scoville, R. and Stackelberg, O. P. (1972) Asymptotic properties of Eulerian numbers. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 23 47–54.

[9]Carlitz, L. and Scoville, R. (1974) Generalized Eulerian numbers: combinatorial applications. J. Reine Angew. Math. 265 110–137.

[10]Chow, C.-O. and Gessel, I. M. (2007) On the descent numbers and major indices for the hyperoctahedral group. Adv. Appl. Math. 38 275–301.

[11]Corteel, S. and Dasse-Hartaut, S. (2011) Statistics on staircase tableaux, Eulerian and Mahonian statistics. In *23rd International Conference on Formal Power Series and Algebraic Combinatorics: FPSAC 2011*, DMTCS proc. **AO** 245–255.

[12]Corteel, S. and Hitczenko, P. (2007) Expected values of statistics on permutation tableaux. In *2007 Conference on Analysis of Algorithms: AofA 07*, DMTCS proc. **AH** 325–339.

[13]Corteel, S. and Nadeau, P. (2009) Bijections for permutation tableaux. European J. Combin. 30 295–310.

[14]Corteel, S., Stanley, R., Stanton, D. and Williams, L. (2012) Formulae for Askey–Wilson moments and enumeration of staircase tableaux. Trans. Amer. Math. Soc. 364 6009–6037.

[15]Corteel, S. and Williams, L. K. (2007) A Markov chain on permutations which projects to the PASEP. *Int. Math. Res. Notes*, #17.

[16]Corteel, S. and Williams, L. K. (2007) Tableaux combinatorics for the asymmetric exclusion process. Adv. Appl. Math. 39 293–310.

[17]Corteel, S. and Williams, L. K. (2010) Staircase tableaux, the asymmetric exclusion process, and Askey–Wilson polynomials. Proc. Natl Acad. Sci. 107 6726–6730.

[18]Corteel, S. and Williams, L. K. (2011) Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials. Duke Math. J., 159: 385–415.

[19]Dasse-Hartaut, S. and Hitczenko, P. (2013) Greek letters in random staircase tableaux. Random Struct. Alg. 42 73–96.

[20]Derrida, B., Evans, M. R., Hakim, V. and Pasquier, V. (1993) Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26 1493–1517.

[23]Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theoret. Popul. Biol. 3 87–112.

[24]Féray, V. (2013) Asymptotic behavior of some statistics in Ewens random permutations. Electron. J. Probab. 18 (76), 1–32.

[25]Flajolet, P., Dumas, P. and Puyhaubert, V. (2006) Some exactly solvable models of urn process theory. In *Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities*, DMTCS proc. **AG** 59–118.

[26]Franssens, G. R. (2006) On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles. J. Integer Seq. 9 #06.4.1.

[27]Freedman, D. A. (1965) Bernard Friedman's urn. Ann. Math. Statist. 36 956–970.

[28]Friedman, B. (1949) A simple urn model. Comm. Pure Appl. Math. 2 59–70.

[29]Frobenius, G. (1910) Über die Bernoullischen Zahlen und die Eulerschen Polynome. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, pp. 809–847.

[30]Gawronski, W. and Neuschel, T. (2013) Euler–Frobenius numbers. Integral Transforms and Special Functions 24 817–830.

[31]Graham, R. L., Knuth, D. E. and Patashnik, O. (1994) Concrete Mathematics, second edition, Addison-Wesley.

[32]Gut, A. (2013) Probability: A Graduate Course, second edition, Springer.

[33]Hitczenko, P. and Janson, S. (2010) Asymptotic normality of statistics on permutation tableaux. Contemporary Math. 520 83–104.

[34]Janson, S. (2004) Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Proc. Appl. 110 177–245.

[35]Janson, S. (2013) Euler–Frobenius polynomials and rounding. *Online Journal of Analytic Combinatorics*, **[S.l.]** 8.

[36]Liu, L. L. and Wang, Y. (2007) A unified approach to polynomial sequences with only real zeros. Adv. Appl. Math. 38 542–560.

[37]MacMahon, P. A. (1920) The divisors of numbers. Proc. London Math. Soc. Ser. 2 19 305–340.

[38]Meinardus, G. and Merz, G. (1974) Zur periodischen Spline-Interpolation. In Spline-Funktionen: Oberwolfach 1973, Bibliographisches Institut, pp. 177–195.

[39]Nadeau, P. (2011) The structure of alternative tableaux. J. Combin. Theory Ser. A 118 1638–1660.

[42]Petrov, V. V. (1975) Sums of Independent Random Variables, Springer.

[43]Reimer, M. (1982) Extremal spline bases. J. Approx. Theory 36 91–98.

[44]Reimer, M. (1985) The main roots of the Euler–Frobenius polynomials. J. Approx. Theory 45 358–362.

[45]Schmidt, F. and Simion, R. (1997) Some geometric probability problems involving the Eulerian numbers. Electron. J. Combin. 4 R18.

[46]Siepmann, D. (1988) Cardinal interpolation by polynomial splines: interpolation of data with exponential growth. J. Approx. Theory 53 167–183.

[47]Stanley, R. P. (1997) Enumerative Combinatorics, Vol. I, Cambridge University Press.

[48]Steingrímsson, E. and Williams, L. K. (2007) Permutation tableaux and permutation patterns. J. Combin. Theory Ser. A 114 211–234.

[49]ter Morsche, H. (1974) On the existence and convergence of interpolating periodic spline functions of arbitrary degree. In Spline-Funktionen: Oberwolfach 1973, Bibliographisches Institut, pp. 197–214.

[50]Wang, Y. and Yeh, Y.-N. (2005) Polynomials with real zeros and Pólya frequency sequences. J. Combin. Theory Ser. A 109 63–74.