Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-vcb8f Total loading time: 0.366 Render date: 2022-09-27T14:42:31.173Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations

Published online by Cambridge University Press:  03 June 2015

Mohammad Mirzadeh*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
Maxime Theillard*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
Asdís Helgadöttir*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
David Boy*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
Frédéric Gibou*
Affiliation:
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
Get access

Abstract

We present a solver for the Poisson-Boltzmann equation and demonstrate its applicability for biomolecular electrostatics computation. The solver uses a level set framework to represent sharp, complex interfaces in a simple and robust manner. It also uses non-graded, adaptive octree grids which, in comparison to uniform grids, drastically decrease memory usage and runtime without sacrificing accuracy. The basic solver was introduced in earlier works [16,27], and here is extended to address biomolecular systems. First, a novel approach of calculating the solvent excluded and the solvent accessible surfaces is explained; this allows to accurately represent the location of the molecule’s surface. Next, a hybrid finite difference/finite volume approach is presented for discretizing the nonlinear Poisson-Boltzmann equation and enforcing the jump boundary conditions at the interface. Since the interface is implicitly represented by a level set function, imposing the jump boundary conditions is straightforward and efficient.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aftosmis, M. J., Berger, M. J., and Melton, J. E.Adaptive Cartesian Mesh Generation. In CRC Handbook of Mesh Generation (Contributed Chapter), 1998.Google Scholar
[2]Baker, N. A., Bashford, D., and Case, D. A.Implicit solvent electrostatics in biomolecular simulation. New Algorithms for Macromolecular Simulation, 49(5): 263295, 2006.CrossRefGoogle Scholar
[3]Baker, N. A.Improving implicit solvent simulations: A Poisson-centric view. Curr. Opin. Struc. Biol., 15(2): 137143, April 2005.CrossRefGoogle ScholarPubMed
[4]Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A.Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 98(18): 1003710041, August 2001.CrossRefGoogle ScholarPubMed
[5]Boschitsch, A. H. and Fenley, M. O.A fast and robust Poisson-Boltzmann solver based on adaptive cartesian grids. J. Chem. Theory Comput., 7(5): 15241540, 2011.CrossRefGoogle ScholarPubMed
[6]Can, T., Chen, C.-I., and Wang, Y.-F.Efficient molecular surface generation using level-set methods. J. Mol. Graphics Modell., 25(4): 442454, 2006.CrossRefGoogle ScholarPubMed
[7]Chen, J., Brooks, C. L., and Khandogin, J.Recent advances in implicit solvent-based methods for biomolecular simulations. Curr. Opin. Struc. Biol., 18(2): 140148, April 2008.CrossRefGoogle ScholarPubMed
[8]Chen, L., Holst, M. J., and Xu, J.The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Nume. Anal., 45(6): 22982320, 2007.CrossRefGoogle Scholar
[9]Chern, I.-L., Liu, J.-G., and Wang, W. C.Accurate evaluation of electrostatics for macromolecules in solution. Methods Appl. Anal., 10: 309328, 2003.Google Scholar
[10]Connolly, M. L.Analytical molecular surface calculation. J. Appl. Crystallogr., 16: 548558, 1983.CrossRefGoogle Scholar
[11]Connolly, M. L.The molecular surface package. J. Mol. Graphics, 11(2): 139141, 1993.CrossRefGoogle ScholarPubMed
[12]Fogolari, F., Brigo, A., and Molinari, H.The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J. Mol. Recognit., 15 (6): 377392, 2002.CrossRefGoogle ScholarPubMed
[13]Geng, W., Yu, S., and Wei, G. W.Treatment of charge singularities in implicit solvent models. J. Chem. Phys, 127(11): 114106, 2007.CrossRefGoogle ScholarPubMed
[14]Gilson, M. K., Sharp, K. A., and Honig, B. H.Calculating the electrostatic potential of molecules in solution: Method and error assessment. J. Comput. Chem., 9(4): 327335, June 1988.CrossRefGoogle Scholar
[15]Greer, J. and Bush, B. L.Macromolecular shape and surface maps by solvent exclusion. Proc. Natl. Acad. Sci. USA, 75(1): 303, 1978.CrossRefGoogle ScholarPubMed
[16]Helgadottir, A. and Gibou, F.A Poisson-Boltzmann solver on irregular domains with Neumann or Robin boundary conditions on non-graded adaptive grid. J. Comput. Phys., 230: 38303848, 2011.CrossRefGoogle Scholar
[17]Kirkwood, J.G.Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys., 2(7): 351, 1934.CrossRefGoogle Scholar
[18]Koehl, P.Electrostatics calculations: Latest methodological advances. Curr. Opin. Struc. Biol., 16(2): 142151, 2006.CrossRefGoogle ScholarPubMed
[19]Lee, B. and Richards, F. M.The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol., 55(3): 379400, 1971.CrossRefGoogle ScholarPubMed
[20]Dzubiella, J.McCammon, J. A.Cheng, L.-T. and Li, Bo.Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys., 127: 084503, 2007.Google Scholar
[21]Lu, B. Z., Zhou, Y. C., Holst, M. J., and McCammon, J. A.Recent Progress in numerical methods for the Poisson Boltzmann equation in biophysical applications. Commun. Comput. Phys., 3(5): 9731009, 2008.Google Scholar
[22]Micu, A. M., Bagheri, B., Ilin, A. V., Scott, L. R., and Pettitt, B. M.Numerical Considerations in the Computation of the electrostatic free energy of interaction within the Poisson-Boltzmann theory. J. Comput. Phys., 136: 263271, 1997.CrossRefGoogle Scholar
[23]Min, C.Local level set method in high dimension and codimension. J. Comput. Phys., 200: 368382, 2004.CrossRefGoogle Scholar
[24]Min, C. and Gibou, F.Geometric integration over irregular domains with application to level set methods. J. Comput. Phys., 226: 14321443, 2007.CrossRefGoogle Scholar
[25]Min, C. and Gibou, F.A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys., 225: 300321, 2007.CrossRefGoogle Scholar
[26]Min, C., Gibou, F., and Ceniceros, H.A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys., 218: 123140, 2006.CrossRefGoogle Scholar
[27]Mirzadeh, M., Theillard, M., and Gibou, F.A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids. J. Comput. Phys., 230: 21252140, 2010.CrossRefGoogle Scholar
[28]Ng, Y-T., Min, C., and Gibou, F.An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys., 228: 88078829, 2009.CrossRefGoogle Scholar
[29]Osher, S. and Fedkiw, R.Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002. New York, NY.Google Scholar
[30]Osher, S. and Sethian, J.Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79: 1249, 1988.CrossRefGoogle Scholar
[31]Wei, G. W., Bates, P., and Zhao, S.Minimal molecular surfaces and their applications. J. Comput. Chem., 29: 380391, 2008.Google Scholar
[32]Pan, Q. and Tai, X-C.Model the solvent-excluded surface of 3d protein molecular structures using geometric pde-based level-set method. Commun. Comput. Phys., 6: 777792, 2009.CrossRefGoogle Scholar
[33]Richards, F. M.Areas, Volumes, Packing, and Protein Structure. Annu. Rev. Biophys. Bio., 6(1): 151176, 1977.CrossRefGoogle ScholarPubMed
[34]Samet, H.The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York, 1989.Google Scholar
[35]Samet, H.Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS. Addison-Wesley, New York, 1990.Google Scholar
[36]Sanner, M. F. and Olson, A. J.Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38(3): 305320, 1996.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
[37]Sethian, J. A.Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999. Cambridge.Google Scholar
[38]Sharp, K. A. and Honig, B.Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem., 94(19): 76847692, September 1990.CrossRefGoogle Scholar
[39]Warwicker, J. and Watson, H. C.Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J. Mol. Biol., 157(4): 671679, 1982.CrossRefGoogle ScholarPubMed
[40]Zhou, Y. C., Feig, M., and Wei, G. W.Highly accurate biomolecular electrostatics in continuum dielectric environments. J. Comput. Chem., 29: 8797, 2007.CrossRefGoogle Scholar
15
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *