Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-mjrxc Total loading time: 0.275 Render date: 2022-10-07T11:00:24.557Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow

Published online by Cambridge University Press:  03 June 2015

Samaneh Farokhirad*
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Taehun Lee*
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Jeffrey F. Morris*
Affiliation:
Department of Chemical Engineering and Levich Institute, City College of City University of New York, New York, New York 10031, USA
Get access

Abstract

Lattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface approach are performed for droplet dynamics in viscous fluid under shear flow, where the degree of confinement between two parallel walls can play an important role. The effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on droplet deformation and break-up in moderately and highly confined shear flows are investigated.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Taylor, G.I., Proc. Roy. Soc. 26, 501523 (1934).CrossRefGoogle Scholar
[2]de Bruijn, R., Ph.D. thesis, Eindhoven University of Technology (1989).Google Scholar
[3]Grace, H.P., Chem. Eng. Comm. 14, 225277 (1982).CrossRefGoogle Scholar
[4]Megias-Alguacil, D., Feigl, K., Dressler, M., Fischer, P., and Windhab, E.J., J. Non-Newtonian Fluid Mech. 126, 153161 (2005).CrossRefGoogle Scholar
[5]Chang-Zhi, L. and Lie-Jin, G., Heat Transfer-Asian Res. 36, 286294 (2007).CrossRefGoogle Scholar
[6]Li, J., Renardy, Y.Y., Phys Fluids. 12, 269282 (2000).CrossRefGoogle Scholar
[7]Janssen, P.J.A. and Anderson, P.D., J. Comput. Phys. 227, 88078819 (2008).CrossRefGoogle Scholar
[8]Inamuro, T., Tomita, R., and Ogino, F., Int. J. Mod. Phys. B 17, 2126 (2003).CrossRefGoogle Scholar
[9]Wagner, A.J., Wilson, L.M., and Cates, M.E., Phys. Rev. E 68, 045301(R) (2003).Google Scholar
[10]van der Sman, R.G.M. and van der Graaf, S., Comp. Phys. Comm. 178, 492504 (2008).CrossRefGoogle Scholar
[11]Lee, T., Comput. Math. Appl. 58, 987994 (2009).CrossRefGoogle Scholar
[12]Lee, T. and Liu, L., J. Comput. Phys. 229, 80458063 (2010).CrossRefGoogle Scholar
[13]Shan, X. and Chen, H., Phys. Rev. E 47, 18151819 (1993).CrossRefGoogle Scholar
[14]Swift, M.R., Osborn, W.R., and Yeomans, J.M., Phys. Rev. E 54, 50415052 (1996).Google Scholar
[15]Ertas, D. and Kardar, M., J. Comput. Phys. 155, 96127 (1999).Google Scholar
[16]Sheth, K.S. and Pozrikidis, C., Comput. Fluids 24, 101119 (1995).CrossRefGoogle Scholar
[17]Peskin, C.S., J. Comp. Phys. 25, 220252 (1977).CrossRefGoogle Scholar
[18]Janssen, P.J.A., Vananroye, A., Van PuyveldeJ, P., Moldenaers, P., and Anderson, P.D., J. Rheol. 54, 10471060 (2010).CrossRefGoogle Scholar
[19]Stone, H.A., Annu. Rev. Fluid Mech. 26, 65102 (1994).CrossRefGoogle Scholar
[20]Renardy, Y.Y., Phys. Fluids 13, 713 (2001).CrossRefGoogle Scholar
[21]Mikulencak, D.R. and Morris, J.F., J. Fluid Mech. 520, 215242 (2004).CrossRefGoogle Scholar
[22]Zurita-gotor, M., Blawzdziewicz, J., and Wajnryb, E., J. Fluid Mech. 592, 447469 (2007).CrossRefGoogle Scholar
[23]Singh, R.K. and Sarkar, K., J. Fluid Mech. 683, 149171 (2011).CrossRefGoogle Scholar
[24]Vananroye, A., Janssen, P.J.A., Anderson, P.D., Van PuyveldeJ, P., and Moldenaers, P., Phys. Fluids 20, 013101 (2008).CrossRefGoogle Scholar
20
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *