Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-5vsr4 Total loading time: 0.186 Render date: 2021-05-15T06:36:14.568Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow

Published online by Cambridge University Press:  03 June 2015

Samaneh Farokhirad
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Taehun Lee
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Jeffrey F. Morris
Affiliation:
Department of Chemical Engineering and Levich Institute, City College of City University of New York, New York, New York 10031, USA
Get access

Abstract

Lattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface approach are performed for droplet dynamics in viscous fluid under shear flow, where the degree of confinement between two parallel walls can play an important role. The effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on droplet deformation and break-up in moderately and highly confined shear flows are investigated.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Taylor, G.I., Proc. Roy. Soc. 26, 501523 (1934).CrossRefGoogle Scholar
[2]de Bruijn, R., Ph.D. thesis, Eindhoven University of Technology (1989).Google Scholar
[3]Grace, H.P., Chem. Eng. Comm. 14, 225277 (1982).CrossRefGoogle Scholar
[4]Megias-Alguacil, D., Feigl, K., Dressler, M., Fischer, P., and Windhab, E.J., J. Non-Newtonian Fluid Mech. 126, 153161 (2005).CrossRefGoogle Scholar
[5]Chang-Zhi, L. and Lie-Jin, G., Heat Transfer-Asian Res. 36, 286294 (2007).CrossRefGoogle Scholar
[6]Li, J., Renardy, Y.Y., Phys Fluids. 12, 269282 (2000).CrossRefGoogle Scholar
[7]Janssen, P.J.A. and Anderson, P.D., J. Comput. Phys. 227, 88078819 (2008).CrossRefGoogle Scholar
[8]Inamuro, T., Tomita, R., and Ogino, F., Int. J. Mod. Phys. B 17, 2126 (2003).CrossRefGoogle Scholar
[9]Wagner, A.J., Wilson, L.M., and Cates, M.E., Phys. Rev. E 68, 045301(R) (2003).Google Scholar
[10]van der Sman, R.G.M. and van der Graaf, S., Comp. Phys. Comm. 178, 492504 (2008).CrossRefGoogle Scholar
[11]Lee, T., Comput. Math. Appl. 58, 987994 (2009).CrossRefGoogle Scholar
[12]Lee, T. and Liu, L., J. Comput. Phys. 229, 80458063 (2010).CrossRefGoogle Scholar
[13]Shan, X. and Chen, H., Phys. Rev. E 47, 18151819 (1993).CrossRefGoogle Scholar
[14]Swift, M.R., Osborn, W.R., and Yeomans, J.M., Phys. Rev. E 54, 50415052 (1996).Google Scholar
[15]Ertas, D. and Kardar, M., J. Comput. Phys. 155, 96127 (1999).Google Scholar
[16]Sheth, K.S. and Pozrikidis, C., Comput. Fluids 24, 101119 (1995).CrossRefGoogle Scholar
[17]Peskin, C.S., J. Comp. Phys. 25, 220252 (1977).CrossRefGoogle Scholar
[18]Janssen, P.J.A., Vananroye, A., Van PuyveldeJ, P., Moldenaers, P., and Anderson, P.D., J. Rheol. 54, 10471060 (2010).CrossRefGoogle Scholar
[19]Stone, H.A., Annu. Rev. Fluid Mech. 26, 65102 (1994).CrossRefGoogle Scholar
[20]Renardy, Y.Y., Phys. Fluids 13, 713 (2001).CrossRefGoogle Scholar
[21]Mikulencak, D.R. and Morris, J.F., J. Fluid Mech. 520, 215242 (2004).CrossRefGoogle Scholar
[22]Zurita-gotor, M., Blawzdziewicz, J., and Wajnryb, E., J. Fluid Mech. 592, 447469 (2007).CrossRefGoogle Scholar
[23]Singh, R.K. and Sarkar, K., J. Fluid Mech. 683, 149171 (2011).CrossRefGoogle Scholar
[24]Vananroye, A., Janssen, P.J.A., Anderson, P.D., Van PuyveldeJ, P., and Moldenaers, P., Phys. Fluids 20, 013101 (2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *