Skip to main content
×
Home

An Accelerated Method for Simulating Population Dynamics

  • Daniel A. Charlebois (a1) (a2) and Mads Kærn (a1) (a2) (a3)
Abstract
Abstract

We present an accelerated method for stochastically simulating the dynamics of heterogeneous cell populations. The algorithm combines a Monte Carlo approach for simulating the biochemical kinetics in single cells with a constant-number Monte Carlo method for simulating the reproductive fitness and the statistical characteristics of growing cell populations. To benchmark accuracy and performance, we compare simulation results with those generated from a previously validated population dynamics algorithm. The comparison demonstrates that the accelerated method accurately simulates population dynamics with significant reductions in runtime under commonly invoked steady-state and symmetric cell division assumptions. Considering the increasing complexity of cell population models, the method is an important addition to the arsenal of existing algorithms for simulating cellular and population dynamics that enables efficient, coarse-grained exploration of parameter space.

Copyright
Corresponding author
Corresponding author.Email:daniel.charlebois@uottawa.ca
Email:mkaern@uottawa.ca
References
Hide All
[1]Acar M., Mettetal J. T. and Oudenaarden A. van, Stochastic switching as a survival strategy in fluctuating environments, Nat. Genet., 40 (2008), 471475.
[2]Blake W., Balazsi G., Kohanski M., Isaacs F., Murphy K., Kuang Y., Cantor C., Walt D. and Collins J., Phenotypic consequences of promoter-mediated transcriptional noise, Mol. Cell, 24 (2006), 853865.
[3]Boman B. M., Wicha M. S., Fields J. Z. and Runquist O. A., Symmetric division of cancer stem cells - a key mechanism in tumor growth that should be targeted in future therapeutic approaches, Clinical Pharmacology and Therapeutics, 81 (2007), 893898.
[4]Charlebois D. A, Intosalmi J., Fraser D. and Kaern M., An algorithm for the stochastic simulation of gene expression and heterogeneous population dynamics, Commun. Comput. Phys., 9 (2011), 89112.
[5]Charlebois D. A, Abdennur N. and Kaern M., Gene expression noise facilitates adaptation and drug resistance independently of mutation, Phys. Rev. Lett., 107 (2011), doi: 10.1103/Phys-RevLett.107.218101.
[6]Ribeiro A. S., Charlebois D. A. and Lyold-Price J., CellLine, a stochastic cell lineage simulator, Bioinformatics, 23 (2007), 34093411.
[7]Eldar A. and Elowitz M., Functional roles for noise in genetic circuits, Nature, 467 (2010), 167173.
[8]Feierbach B. and Chang F., Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division, Curr. Biol., 11 (2001), 16561665.
[9]Fraser D. and Kaern M., A chance at survival: gene expression noise and phenotypic diversification strategies, Molec. Microbiol., 71 (2009), 13331340.
[10]Gillespie D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403434.
[11]Gillespie D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), 23402361.
[12]Lu T., Volfson D., Tsimring L. and Hasty J., Cellular growth and division in the Gillespie algorithm, Syst. Biol., 1 (2004), 121128.
[13]Volfson D., Marciniak J.1, Blake W. J., Ostroff N.1, Tsimring L. S. and Hasty J., Origins of extrinsic variability in eukaryotic gene expression, Nature, 439 (2006), 861864.
[14]Huttner W. B. and Kosodo Y., Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system, Curr. Opin. Cell. Biol., 17 (2005), 648657.
[15]Kaern M., Elston T. C., Blake W. J. and Collins J. J., Stochasticity in gene expression, Nat. Rev. Genet., 6 (2005), 451464.
[16]Kaufmann B. B. and Oudenaarden A. van, Stochastic gene expression: from single molecules to the proteome, Curr. Opin. Genet. Dev., 17 (2007), 107112.
[17]Lin Y., Lee K. and Matsoukas T., Solution of the population balance equation using constant-number Monte Carlo, Chem. Eng. Sci., 57 (2002), 22412252.
[18]Lu T., Volfson D., Tsimring L. and Hasty J., Cellular growth and division in the Gillespie algorithm, Syst. Biol., 1 (2004), 121128.
[19]Nevozhay D., Adams R. M., Itallie E. V., Bennett M. R. and Balazsi G., Mapping the environmental fitness landscape of a synthetic gene circuit, PLoS Comput. Biol., 8 (2012), doi:10.1371/journal.pcbi.1002480.
[20]Maheshri N. and O’Shea E. K., Living with noisy genes: how cells function reliably with inherent variability in gene expression, Annu. Rev. BioPhys. Biomol. Struct., 36 (2007), 413434.
[21]Mantzaris N. V., Stochastic and deterministic simulations of heterogeneous cell population dynamics, J. Theor. Biol., 241 (2006), 690706.
[22]Mantzaris N. V., From single-cell genetic architecture to cell population dynamics: Quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture, BioPhys. J., 92 (2007), 42714288.
[23]McKay M. D., Beckman R. J. and Conover W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239245.
[24]McKay M. D., Sensitivity and uncertainty analysis using a statistical sample of input values, in: Ronen Y. (Ed.), Uncertainty Analysis, Ch. 4, pp. 145186, CRC Press, Bcca Raton, Florida, 1988.
[25]Murugan R., Multiple stochastic point processes in gene expression, J. Stat. Phys., 131 (2008), 153165.
[26]Paulsson J., Summing up the noise in gene networks, Nature, 427 (2004), 415418.
[27]Raser J. M. and O’Shea E. K., Control of stochasticity in eukaryotic gene expression, Science, 304 (2004), 18111814.
[28]Ramkrishna D., The status of population balances, Rev. Chem. Engng., 3 (1985), 4995.
[29]Samoilov M. S., Price G. and Arkin A. P., From fluctuations to phenotypes: The physiology of noise, Sci. STKE, 366 (2006), re17.
[30]Scott M., Ingalls B. and Kaern M., Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks, Chaos, 16 (2006), 026107.
[31]Shahrezaei V. and Swain P. S., Analytical distributions for stochastic gene expression, PNAS, 105 (2008), 1725617261.
[32]Shahrezaei V., Ollivier J. and Swain P.Colored extrinsic fluctuations and stochastic gene expression, Mol. Syst. Biol., 4 (2008), 196.
[33]Sigal A., Milo R., Cohen A., Geva-Zatorsky N., Klein Y., Liron Y., Rosenfeld N., Danon T., Perzov N. and Alon U., Variability and memory of protein levels in human cells, Nature, 444 (2006), 643646.
[34]Smith M. and Matsoukas T., Constant-number Monte Carlo simulation of population balances, Chem. Eng. Sci., 53 (1998), 17771786.
[35]Spudich J. L. and Koshland D. E., Non-genetic individuality: chance in the single cell, Nature, 262 (1976), 467471.
[36]Swain P. S., Elowits M. B. and Siggia E. D., Intrinsic and extrinsic contributions to stochasticity in gene expression, PNAS, 99 (2002), 1279512800.
[37]Thattai M. and Oudenaarden A. van, Attenuation of noise in ultrasensitive signaling cascades, BioPhys. J., 82 (2002), 29432950.
[38]Uhlenbeck G. and Ornstein L., On the theory of Brownian motion, Phys. Rev., 36 (2008), 823841.
[39]Woolner S. and Papalopulu N., Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces, Dev. Cell, 22 (2009), 775787.
[40]Zadrag-Tecza R., Kwolek-Mirek M., Bartosz G. and Bilinski T., Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae, Biogerontology, 10 (2009), 481488.
[41]Zhang Z., Qian W. and Zhang J., Positive selection for elevated gene expression noise in yeast, Mol. Syst. Biol., (2009), doi:10.1038/msb.2009.58.
[42]Zhuravel D., Fraser D., St-Pierre S., Tepliakova L., Pang W., Hasty J. and Kaern M., Phenotypic impact of regulatory noise in cellular stress-response pathways, Syst. Synth. Biol., 4 (2010), doi:10.1007/s11693-010-9055-2.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.