Skip to main content
×
Home

An Algorithm for the Stochastic Simulation of Gene Expression and Heterogeneous Population Dynamics

  • Daniel A. Charlebois (a1) (a2), Jukka Intosalmi (a3) (a4), Dawn Fraser (a1) (a2) and Mads Kærn (a1) (a2) (a5)
Abstract
Abstract

We present an algorithm for the stochastic simulation of gene expression and heterogeneous population dynamics. The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a constant-number Monte Carlo method to simulate time-dependent statistical characteristics of growing cell populations. To benchmark performance, we compare simulation results with steady-state and time-dependent analytical solutions for several scenarios, including steady-state and time-dependent gene expression, and the effects on population heterogeneity of cell growth, division, and DNA replication. This comparison demonstrates that the algorithm provides an efficient and accurate approach to simulate how complex biological features influence gene expression. We also use the algorithm to model gene expression dynamics within “bet-hedging” cell populations during their adaption to environmental stress. These simulations indicate that the algorithm provides a framework suitable for simulating and analyzing realistic models of heterogeneous population dynamics combining molecular-level stochastic reaction kinetics, relevant physiological details and phenotypic variability.

Copyright
Corresponding author
Corresponding author.Email:daniel.charlebois@uottawa.ca
Corresponding author.Email:mkaern@uottawa.ca
References
Hide All
[1]Acar M., Mettetal J. T. and van Oudenaarden A., Stochastic switching as a survival strategy in fluctuating environments, Nat. Genet., 40 (2008), 471–475.
[2]Adalsteinsson D., McMillen D. and Elston T. C., Biochemical network stochastic simulator (BioNetS): software for stochastic modeling of biochemical networks, BMC Bioinfo., 5 (2004), 24.
[3]Brewer B. J., Chlebowicz-Sledziewska E. and Fangman W. L., Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae, Mol. Cell. Biol., 4 (1984), 2529–2531.
[4]Cohen D., Optimizing reproduction in a randomly varying environment, J. Theor. Biol., 12 (1966), 119–129.
[5]Eager D. L., Zahorjan J. and Lazowska E. D., Speedup versus efficiency in parallel systems, IEEE Trans. Comput., 38 (1989), 408–423.
[6]Fraser D. and Kaern M., A chance at survival: gene expression noise and phenotypic diversification strategies, Molec. Microbiol., 71 (2009), 1333–1340.
[7]Gillespie D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403–434.
[8]Gillespie D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), 2340–2361.
[9]Gillespie D. T., Stochastic simulation of chemical kinetics, Annu. Rev. Phys . Chem., 58 (2007), 35–55.
[10]Gillespie D. T., Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), 1716–1733.
[11]Kaern M., Elston T. C., Blake W. J. and Collins J. J., Stochasticity in gene expression, Nat. Rev. Genet., 6 (2005), 451–464.
[12]Kaufmann B. B. and van Oudenaarden A., Stochastic gene expression: from single molecules to the proteome, Curr. Opin. Genet. Dev., 17 (2007), 107–112.
[13]Kepler T. B. and Elston T. C., Stochasticity in transcriptional regulation, Biophys. J., 81 (2001), 3116–3136.
[14]Kierzek A. M., Stocks: Stochastic kinetic simulations of biochemical systems with Gillespie algorithm, Bioinf., 18 (2002), 470–481.
[15]Kostoglou M. and Karabelas A. J., Evaluation of zero-order methods for simulation particle coagulation, J. Colloid. Interface. Sci., 163 (1994), 420–431.
[16]Lee K. and Matsoukas T., Simultaneous coagulation and break-up using constant-N Monte Carlo, Powder. Technol., 110 (2000), 82–89.
[17]Levins R., Evolution in Changing Environments: Some Theoretical Explorations, Princeton University Press, Princeton, 1968.
[18]Lin Y., Lee K. and Matsoukas T., Solution of the population balance equation using constant-number Monte Carlo, Chem. Eng. Sci., 57 (2002), 2241–2252.
[19]Lu T., Volfson D., Tsimring L. and Hasty J., Cellular growth and division in the Gillespie algorithm, Syst. Biol., 1 (2004), 121–128.
[20]Maheshri N. and O’Shea E. K., Living with noisy genes: how cells function reliably with inherent variability in gene expression, Annu. Rev. Biophys. Biomol. Struct., 36 (2007), 413–434.
[21]Mantzaris N. V., Stochastic and deterministic simulations of heterogeneous cell population dynamics, J. Theor. Biol., 241 (2006), 690–706.
[22]Mantzaris N. V., From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture, Biophys. J., 92 (2007), 4271–4288.
[23]Paulsson J., Summing up the noise in gene networks, Nature, 427 (2004), 415–418.
[24]Ramkrishna D., The status of population balances, Rev. Chem. Engng., 3 (1985), 49–95.
[25]Ribeiro A. S, Charlebois D. A and Lloyd-Price J., Cellline, a stochastic cell lineage simulator, Bioinf., 23 (2007), 3409–3411.
[26]Roussel M. and Zhu R., Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression, Phys. Biol., 3 (2006), 274–284.
[27]Rosenfeld N., Perkins T. J., Alon U., Elowitz M. B. and Swain P. S., A fluctuation method to quantify in vivo fluorescence data, Biophys. J., 91 (2006), 759–766.
[28]Samoilov M. S., Price G. and Arkin A. P., From fluctuations to phenotypes: the physiology of noise, Sci. STKE, 366 (2006), re17.
[29]Schaffer W. M., Optimal efforts in fluctuating environments, Am. Nat., 108 (1974), 783–790.
[30]Shahrezaei V. and Swain P. S., Analytical distributions for stochastic gene expression, PNAS, 105 (2008), 17256–17261.
[31]Smith M. and Matsoukas T., Constant-number Monte Carlo simulation of population balances, Chem. Eng. Sci., 53 (1998), 1777–1786.
[32]Stearns S. C., Life-history tactics: a review of the ideas, Q. Rev. Biol., 51 (1976), 3–47.
[33]Swain P. S., Elowitz M. B. and Siggia E. D., Intrinsic and extrinsic contributions to stochas-ticity in gene expression, PNAS, 99 (2002), 12795–12800.
[34]Tyson J. J. and Diekmann O. J., Sloppy size control of the cell division cycle, Theor. Biol., 118 (1986), 405–426.
[35]Volfson D., Marciniak J., Blake W. J., Ostroff N., Tsimring L. S. and Hasty J., Origins of extrinsic variability in eukaryotic gene expression, Nature, 439 (2006), 861–864.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.