[1]
Bouchut, F.. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Frontiers in Mathematics Series. Birkhäuser, 2004.

[2]
Chalons, C. and Coquel, F.. Navier-stokes equations with several independant pressure laws and explicit predictor-corrector schemes. Numerisch Math., 101(3):pp. 451–478, 2005.

[3]
Chalons, C. and Coulombel, J.-F.. Relaxation approximation of the Euler equations. J. Math. Anal. Appl., 348(2):pp. 872–893, 2008.

[4]
Chalons, C., Girardin, M., and Kokh, S.. Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput., 35(6):pp. a2874–a2902, 2013.

[5]
Colella, Ph. and Pao, K.. A projection method for low speed flows. J. Comp. Phys., 149(2):pp. 245–269, 1999.

[6]
Coquel, F., Nguyen, Q. L., Postel, M., and Tran, Q. H.. Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput., 79(271):pp. 1493–1533, 2010.

[7]
Cordier, F., Degond, P., and Kumbaro, A.. An Asymptotic-Preserving all-speed scheme for the Euler and NavierStokes equations. J. Comp. Phys., 231(17):pp. 5685–5704, 2012.

[8]
Degond, P. and Tang, M.. All speed method for the Euler equation in the low mach number limit. Commun. Comp. Phys., 10:pp. 1–31, 2011.

[9]
Degond, P., Jin, S., and Liu, J.-G.. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math., Acad. Sin. (N.S.), 2(4):pp. 851–892, 2007.

[10]
Dellacherie, S., Omnes, P. and Raviart, P.A.. Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system. *submitted*, 2013.

[11]
Dellacherie, S.. Analysis of Godunov type schemes applied to the compressible euler system at low Mach number. J. Comp. Phys., 229(4):pp. 978–1016, 2010.

[12]
Després, B.. Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de lagrange. C. R. Acad. Sci. Paris, Série I, 324:pp. 1301–1306, 1997.

[13]
Després, B., Labourasse, E., Lagoutière, F., and Marmajou, I.. An antidissipative transport scheme on unstructuredmeshes formulticomponent flows. Int. J. Finite. Vol. Meth., 7:pp. 30–65, 2010.

[14]
Després, B.. Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques, volume 68 of *Mathématiques et Applications, SMAI*. Springer, 2010.

[15]
Dauvergne, F., Ghidaglia, J.-M., Pascal, F., and Rovarch, J.-M.. Renormalization of the numerical diffusion for an upwind finite volume method. application to the simulation of Kelvin-Helmholtz instability. Finite Volumes for Complex Applications. V. Proceedings of the 5th International Symposium, Aussois, June 2008, R. Eymard and J.-M. Hérard editors, pp. 321–328, 2008.

[16]
De Vuyst, F. and Gasc, T.. Suitable formulations of Lagrange Remap Finite Volume schemes for manycore / GPU architectures. *Finite Volumes for Complex Applications. VII. Proceedings of the 7th International Symposium, Berlin, June 2014, J. Fuhrmann, M. Ohlberger and Ch. Rohde editors*, 2014.

[17]
Girardin, M.. Asymptotic preserving and all-regime Lagrange-Projection like numerical schemes: Application to two-phase flows in low mach regime. *Thèse de l’Université Pierre et Marie Curie Paris 6*, 2014, available at https://tel.archives-ouvertes.fr/tel-01127428.
[18]
Godlewski, E. and Raviart, P.-A.. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, 1996.

[19]
Guillard, H. and Viozat, C.. On the behavior of upwind schemes in the lowMach limit. Comp. & Fluid, 28:pp. 63–86, 1999.

[20]
Harten, A., Lax, P.D., and Van Leer, B.. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25:pp. 35–61, 1983.

[21]
Toumi, I., Kumbaro, A., and Paillere, H.. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow. In *VKI LS 1999-03, Computational Fluid Dynamics*, 1999.

[22]
Liu, J.-G.
Haack, J., Jin, S.. An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comp. Phys., 12:pp. 955–980, 2012.

[23]
Jin, S.. Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comp. Phys., 122(1):pp. 51–67, 1995.

[24]
Klein, R.. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-dimensional flow. J. Comp. Phys., 121(2):pp. 213–237, 1995.

[25]
Lax, P. D. and Liu, X.-D.. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput., 19(2):pp. 319–340, 1998.

[26]
Liou, M.-S.. A sequel to AUSM, part II: AUSM+-up for all speeds. J. Comp. Phys., 214(1):pp. 137–170, 2006.

[27]
Paillère, H., Viozat, C., Kumbaro, A., and Toumi, I.. Comparison of low mach number models for natural convection problems. Heat and Mass Transfer, 36(6):pp. 567–573, 2000.

[28]
Schochet, S.. Fast singular limits of hyperbolic PDEs. J. Differ. Equations, 114(2):pp. 476–512, 1994.

[29]
Sod, G. A.. Numerical Methods in Fluid Dynamics. Initial and Initial-Boundary Value Problems. Cambridge: Cambridge University Press, 1985.

[30]
Suliciu, I.. On the thermodynamics of rate-type fluids and phase transitions. i. rate-type fluids. Int. J. Eng. Sci., 36(9):pp. 921–947, 1998.

[31]
Sun, M.. An implicit cell-centered Lagrange-Remap scheme for all speed flows. Computers & Fluids, Vol. 96, pp. 397–405, 2014.

[32]
Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., and Williams, R.J.R.. An improved reconstruction method for compressible flows with low Mach number features. J. Comp. Phys., 227(10):pp. 4873–4894, 2008.

[33]
Turkel, E.. Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comp. Phys., 72(2):pp. 277–298, 1987.

[34]
Weyl, H.. Shock waves in arbitrary fluids. Commun. Pure Appl. Math., 2:pp. 103–122, 1949.