Skip to main content

Characteristic Local Discontinuous Galerkin Methods for Incompressible Navier-Stokes Equations

  • Shuqin Wang (a1) (a2), Weihua Deng (a1), Jinyun Yuan (a2) and Yujiang Wu (a1)

By combining the characteristic method and the local discontinuous Galerkin method with carefully constructing numerical fluxes, variational formulations are established for time-dependent incompressible Navier-Stokes equations in 2. The nonlinear stability is proved for the proposed symmetric variational formulation. Moreover, for general triangulations the priori estimates for the L 2–norm of the errors in both velocity and pressure are derived. Some numerical experiments are performed to verify theoretical results.

Corresponding author
*Corresponding author. Email addresses: (S. Wang), (W. Deng), (J. Yuan), (Y.Wu)
Hide All

Communicated by Chi-Wang Shu

Hide All
[1] Achdou Y., Guermond J.-L., Convergence analysis of a finite element projection/lagrange-Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 37 (2000), 799826.
[2] Arbogast T., Wheeler M. F., A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404424.
[3] Bassi F., Rebay S., A high-order accurate discontinuous finite elemnet method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267279.
[4] Boukir K., Maday Y., Métivet B., A high order characteristics/ finite element method for the incompressible Navier-Stokes equations, Int. J. Comput. Numer. Methods Fluids, 25 (1997), 14211454.
[5] Castillo P., Cockburn B., Perugia I., and Schötzau D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 38 (2000), 16761706.
[6] Chen Z. X., Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Meth. Appl. Mech. Engrg., 191 (2002), 25092538.
[7] Chen Z. X., Ewing R. E., Jiang Q. Y., and Spagnuolo A. M., Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal., 40 (2002), 14911515.
[8] Chorin A., Marsden J. E., A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 2000.
[9] Chrysafinos K., Walkington N. J., Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations, Math. Comp., 79 (2010), 21352167.
[10] Cockburn B., Kanschat G., Schötzau D., Schwab C., Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal., 40 (2003), 319343.
[11] Cockburn B., Kanschat G., Schötzau D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74 (2005), 10671095.
[12] Cockburn B., Kanschat G., Schötzau D., A note on discontinuous Galerkin divergence free solutions of Navier-Stokes equations, J. Sci. Comput., 31 (2007), 6173.
[13] Cockburn B., Shu C. -W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 24402463.
[14] Cockburn B., Shu C.-W., Runge-Kutta discontinuous Galerkin methods for convection dominated problems, J. Sci. Comput., 16 (2001), 173261.
[15] Douglas J. Jr. and Russell T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871885.
[16] Girault V., Raviart P., Finite Element Approximations for the Navier-Stokes Equations, Springer-Verlag, New York, 1986.
[17] Girault V., Rivière B., Wheeler M. F., A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations, ESAIM Math. Model. Numer. Anal., 39 (2005), 11151147.
[18] Guermond J. L., Shen J., On the error estimates for the rotational pressure correction projection method, Math. Comp., 73 (2003), 17191737.
[19] He Y., A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal., 23 (2003), 665691.
[20] Hesthaven J. S., Warburton T., Nodal discontinuous Galerkin methods: Algorithms, Analysis, and Applications. Springer-Verlag, New York, USA, 2008.
[21] Liu M. E., Ren Y. X., Zhang H. X., A class of fully second order accurate projection methods for solving the incompressible Navier-Stokes equations, J. Comput. Phys., 200 (2004), 325346.
[22] Nochetto R. H., Pyo J. -H., The Gauge-Uzawa finite element method. Part I: The Navier-Stokes Equations, SIAM J. Numer. Anal., 43 (2005), 10431086.
[23] Rivière B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: Theory and Implementation, Society for Industrial and Applied Mathematics, SIAM, 1999.
[24] Rivière B., Girault V., Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces, Comput. Meth. Appl. Mech. Engrg., 195 (2006), 32743292.
[25] Si Z. Y., Song X. G., Huang P. Z., Modified characteristics Gauge-Uzawa finite element method for time dependent conduction-convection problems, J. Sci. Comput., 58 (2014), 124.
[26] Süli E., Convergence and nonlinear stability of Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988), 459483.
[27] Temam R., Navier-Stokes Equations: Theory and numerical analysis, North-Holland-Amsterdam. New York. Oxford, Elsevier Science Publishers B.V., 1984.
[28] Wang H., Wang K. X., Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 13051329.
[29] Wang H., Wang K. X., Uniform estimates of an Eulerian-Lagrangian method for time-dependent convection-diffusion equations in multiple space dimensions, SIAM J. Numer. Anal., 48 (2010), 1444-1473.
[30] Wang H., An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., 46 (2008), 21332152.
[31] Wang K. X., Wang H., Al-Lawatia M., Rui H. X., A family of characteristic discontinuous Galerkinmethods for transient, advection-diffusion equations and their optimal-order L 2 error estimates, Commun. Comput. Phys., 6 (2009), 203230.
[32] Wang K. X., Wang H., Uniform estimates for a family of Eulerian-Lagrangian methods for time-dependent convection-diffusion equations with degenerate diffusion, IMA J. Numer. Anal., 31 (2011), 10061037.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 130 *
Loading metrics...

* Views captured on Cambridge Core between 3rd May 2017 - 14th December 2017. This data will be updated every 24 hours.