Skip to main content

A Comparison of Fourier Spectral Iterative Perturbation Method and Finite Element Method in Solving Phase-Field Equilibrium Equations

  • Pengcheng Song (a1) (a2) (a3), Tiannan Yang (a3), Yanzhou Ji (a3), Zhuo Wang (a4), Zhigang Yang (a2), Longqing Chen (a3) and Lei Chen (a4)...

This paper systematically compares the numerical implementation and computational cost between the Fourier spectral iterative perturbation method (FSIPM) and the finite element method (FEM) in solving partial differential equilibrium equations with inhomogeneous material coefficients and eigen-fields (e.g., stress-free strain and spontaneous electric polarization) involved in phase-field models. Four benchmark numerical examples, including inhomogeneous elastic, electrostatic, and steady-state heat conduction problems demonstrate that (1) the FSIPM rigorously requires uniform hexahedral (3D) and quadrilateral (2D) mesh and periodic boundary conditions for numerical implementation while the FEM permits arbitrary mesh and boundary conditions; (2) the FSIPM solutions are comparable to their FEM counterparts, and both of them agree with the analytic solutions, (3) the FSIPM is much faster in solving equilibrium equations than the FEM to achieve the accurate solutions, thus exhibiting a greater potential for large-scale 3D computations.

Corresponding author
*Corresponding author. Email addresses: (L. Chen), (P. C. Song), (T. N. Yang), (Y. Z. Ji), (Z. Wang), (Z. G. Yang), (L. Q. Chen)
Hide All

The authors contribute equally.

Hide All
[1] Artemev A., Jin Y., Khachaturyan A.G., Three-dimensional phase field model of proper martensitic transformation, Acta Mater. 49 (2001) 1165.
[2] Bhate D.N., Kumar A., Bower A.F., Diffuse interface model for electromigration and stress voiding, J. Appl. Phys. 87 (2000) 1712.
[3] Bhattacharyya S., Heo T.W., Chang K., Chen L.Q., A spectral iterative method for the computation of effective properties of elastically inhomogeneous polycrystals, Commun. Comput. Phys. 11 (2012) 726.
[4] Cahn J.W., On spinodal decomposition, Acta Metall. 9 (1961) 795.
[5] Cahn J.W., Allen S.M., A Microscopic Theory of Domain Wall Motion and Its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics, J. de Physique 38 (1977) C7.
[6] Chen L., Chen J., Ji Y.Z., Heo T.W., Bhattacharyya S., Lebensohn R., Mathaudhu S., Liu Z.K., Chen L.Q., An integrated fast Fourier transform-based phase-field and crystal plasticity approach for modelling grain growth of three dimensional polycrystals, Comput. Methods in Appl. Mech. Eng. 285 (2015) 829848.
[7] Chen L., Fan F.F., Liang H., Chen J., Ji Y.Z., Zhang S.L., Zhu T., Chen L.Q., A phase-field model incorporating large elasto-plastic deformation: application to lithiated silicon electrodes, J. Electrochemical Soc. 161 (2014) F1F9.
[8] Chen L., Nguyen-Xuan X., Nguyen-Thoi T., Zeng K.Y., Wu S.C., Assessment of smoothed point interpolation methods for elastic mechanics, Int. J. Num. Med. Bio. Eng 89 (2010) 1635.
[9] Chen L., Zhang H.W., Liang L.Y., Liu Z., Qi Y., Lu P., Chen J., Chen L.Q., Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model, J. Power Sources 300 (2015) 376.
[10] Chen L.Q., Phase-field models for microstructure evolution, Ann. Rev. Mater. Res. 32 (2002) 113.
[11] Chen L.Q., Yang W., Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B 50 (1994) 15752.
[12] Hu S.Y., Chen L.Q., A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49 (2001) 1879.
[13] Jin Y.M., Artemev A., Khachaturyan A.G., Three-dimensional phase field model of low symmetry martensitic transformation in polycrystal: simulation of inline-graphic martensite in AuCd alloys, Acta Mater. 49 (2001) 2309.
[14] Khachaturyan A.G., Theory of structural transformations in solids, New York: Wiley, 1983.
[15] Kobayashi R., Warren J.A., Craig Carter W., A continuum model of grain boundaries, Phys. D 140 (2000) 141.
[16] Leo P.H., Lowengrub J.S., Jou H.J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater. 46 (1998) 2113.
[17] Li D.Y., Chen L.Q., Shape evolution and splitting of coherent particles under applied stresses, Acta Mater. 47 (1998) 247.
[18] Liu B., Raabe D., Roters F., Eisenlohr P., Lebensohn R.A., Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction, Model. Simul. Mater. Sci. Eng. 18 (8) (2010) 85005.
[19] Loginova I., Amberg G., Agren J., Phase-field simulations of non-isothermal binary alloy solidification, Acta Mater. 49 (2001) 573.
[20] Murali P., Bhandakkar T.K., Li W., Jhon M.H., Gao H.J., Ahluwalia R., Role of modulus mismatch on crack propagation and toughness enhancement in bioinspired composites, Phys. Rev. E 84 (2011) 015102.
[21] Mahadevan M., Bradley R.M., Phase field model of surface electromigration in single crystal metal thin films, Phys. D 126 (1999) 201.
[22] Plapp M., Karma A., Eutectic colony formation: a stability analysis, Phys. Rev. E 60 (1999) 6865.
[23] Shen J., Yang X., Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chinese Annals of Mathematics, Series B 31 (2010) 743.
[24] Shen J., Yang X., Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows, SIAM Journal on Numerical Analysis 53 (2015) 279.
[25] Wang B., Woo C.H., Curie temperature and critical thickness of ferroelectric thin films, J. Appl. Phys. 97 (2005) 084109.
[26] Wang B., Woo C.H., Curie-Weiss law in thin-film ferroelectrics, J. Appl. Phys. 100 (2006) 044114.
[27] Wang J.J., Bhattacharyya S., Li Q., Heo T.W., Ma X.Q., Chen L.Q., Elastic solutions with arbitrary elastic inhomogeneity and anisotropy, Phil. Mag. Let. 92 (2012) 327.
[28] Wang J.J., Ma X.Q., Li Q., Britson J., Chen L.Q., Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity, Acta Mater. 61 (2013) 7591.
[29] Wang Y., Khachaturyan A.G., Three-dimensional field model and computer modeling of martensitic transformations, Acta Mater. 45 (1997) 759.
[30] Wang Y.U., Jin Y.M., Khachaturyan A.G., Three-dimensional phase field microelasticity theory of a complex elastically inhomogeneous solid, Appl. Phys. Lett. 80 (2002) 4513.
[31] Woo C.H., Zheng Y., Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional, Appl. Phys. A 91 (2008) 59.
[32] Yu P., Hu W.Y., Chen L.Q., Du Q., An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models, J. Comput. Phys. 208 (2005) 34.
[33] Zhu J.Z., Chen L.Q., Shen J., Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity, Modell. Simul. Mater. Sci. Eng. 9 (2001) 499.
[34] Zou W.N., He Q.C., Zheng Q.S., Inclusions in a finite elastic body, Int. J. Sol. and Struct. 49 (2012) 1627.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 293 *
Loading metrics...

* Views captured on Cambridge Core between 27th March 2017 - 22nd January 2018. This data will be updated every 24 hours.