Skip to main content

Computing Optimal Forcing Using Laplace Preconditioning

  • M. Brynjell-Rahkola (a1), L. S. Tuckerman (a2), P. Schlatter (a1) and D. S. Henningson (a1)

For problems governed by a non-normal operator, the leading eigenvalue of the operator is of limited interest and a more relevant measure of the stability is obtained by considering the harmonic forcing causing the largest system response. Various methods for determining this so-called optimal forcing exist, but they all suffer from great computational expense and are hence not practical for large-scale problems. In the present paper a new method is presented, which is applicable to problems of arbitrary size. The method does not rely on timestepping, but on the solution of linear systems, in which the inverse Laplacian acts as a preconditioner. By formulating the search for the optimal forcing as an eigenvalue problem based on the resolvent operator, repeated system solves amount to power iterations, in which the dominant eigenvalue is seen to correspond to the energy amplification in a system for a given frequency, and the eigenfunction to the corresponding forcing function. Implementation of the method requires only minor modifications of an existing timestepping code, and is applicable to any partial differential equation containing the Laplacian, such as the Navier-Stokes equations. We discuss the method, first, in the context of the linear Ginzburg-Landau equation and then, the two-dimensional lid-driven cavity flow governed by the Navier-Stokes equations. Most importantly, we demonstrate that for the lid-driven cavity, the optimal forcing can be computed using a factor of up to 500 times fewer operator evaluations than the standard method based on exponential timestepping.

Corresponding author
*Corresponding author. Email addresses: Brynjell-Rahkola), S. Tuckerman), Schlatter), S. Henningson)
Hide All
[1] Åkervik E., Ehrenstein U., Gallaire F., and Henningson D. S.. Global two-dimensional stability measures of the flat plate boundary-layer flow. Eur. J. Mech. B-Fluids, 27(5):501513, 2008.
[2] Alizard F., Cherubini S., and Robinet J.-C.. Sensitivity and optimal forcing response in separated boundary layer flows. Phys. Fluids, 21(6), 2009.
[3] Auteri F., Parolini N., and Quartapelle L.. Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys., 183(1):125, 2002.
[4] Bagheri S., Henningson D. S., Hoepffner J., and Schmid P. J.. Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev., 62:020803, 2009.
[5] Barkley D., Blackburn H.M., and Sherwin S. J.. Direct optimal growth analysis for timesteppers. Int. J. Numer. Meth. Fl., 57(9):14351458, 2008.
[6] Barkley D. and Tuckerman L. S.. Stokes preconditioning for the inverse power method. In Kutler P., Flores J., and Chattot J.-J., editors, Lecture Notes in Physics: Proc. of the Fifteenth Int’l. Conf. on Numerical Methods in Fluid Dynamics, pages 7576. Springer, New York, 1997.
[7] Batiste O., Knobloch E., Alonso A., and Mercader I.. Spatially localized binary-fluid convection. J. Fluid Mech., 560:149158, 2006.
[8] Beaume C.. Adaptive Stokes preconditioning for steady incompressible flows. Commun. Comput. Phys., 22(2):494516, 2017.
[9] Bergeon A., Henry D., BenHadid H., and Tuckerman L. S.. Marangoni convection in binary mixtures with Soret effect. J. Fluid Mech., 375:143177, 1998.
[10] Butler K. M. and Farrell B. F.. Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A, 4(8):16371650, 1992.
[11] Campbell S. L., Ipsen I. C. F., Kelley C. T., and Meyer C. D.. GMRES and the minimal polynomial. BIT Numer. Math., 36(4):664675, 1996.
[12] Canuto C., Hussaini Y., Quarteroni A., and Zang T. A.. Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer Berlin Heidelberg, 1988.
[13] Chevalier M., Schlatter P., Lundbladh A., and Henningson D. S.. SIMSON – A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows. Technical Report TRITA-MEK 2007:07, KTH Mechanics, 2007.
[14] Chomaz J. M.. Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech., 37:357392, 2005.
[15] Chomaz J. M., Huerre P., and Redekopp L. G.. Models of hydrodynamic resonances in separated shear flows. In Proceedings of the 6th Symp. Turb. Shear Flows, September 1987.
[16] Chorin A. J. and Marsden J. E.. A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics. Springer New York, 2000.
[17] Cossu C. and Chomaz J.M.. Globalmeasures of local convective instabilities. Phys. Rev. Lett., 78:43874390, Jun 1997.
[18] Driscoll T. A., Toh K. C., and Trefethen L. N.. From potential theory to matrix iterations in six steps. SIAM Rev., 40(3):547578, 1998.
[19] Embree M.. How descriptive are GMRES convergence bounds? Technical Report 99/08, Oxford University Computing Laboratory, June 1999.
[20] Fischer P. F., Lottes J. W., and Kerkemeier S. G.. nek5000 Web page, 2008.
[21] Greenbaum A., Pták V, and Strakoš Z.. Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl., 17(3):465469, 1996.
[22] Huepe C., Métens S., Borckmans P., and Brachet M. E.. Decay rates in attractive Bose-Einstein condensates. Phys. Rev. Lett., 82(8):16161619, 1999.
[23] Huepe C., Tuckerman L.S., Métens S., and Brachet M. E.. Stability and decay rates of nonisotropic attractive Bose-Einstein condensates. Phys. Rev. A, 68:023609, 2003.
[24] Maday Y., Patera A. T., and Rønquist E. M.. The ℙ N ×ℙ N−2 method for the approximation of the Stokes problem. Technical report, Department of Mechanical Engineering, MIT, Cambridge, MA.
[25] Mamun C. K. and Tuckerman L. S.. Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids, 7(1):8091, 1995.
[26] Monokrousos A., Åkervik E., Brandt L., and Henningson D. S.. Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech., 650:181214, 5 2010.
[27] Parks M. L., de Sturler E., Mackey G., Johnson D. D., and Maiti S.. Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput., 28(5):16511674, 2006.
[28] Parlett B.. The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics, 1998.
[29] Patera A. T.. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys., 54(3):468488, 1984.
[30] Reddy S. C., Schmid P. J., Baggett J. S., and Henningson D. S.. On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech., 365:269303, 1998.
[31] Reddy S. C., Schmid P. J., and Henningson D. S.. Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl.Math., 53(1):1547, 1993.
[32] Saad Y. and Schultz M. H.. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856869, 1986.
[33] Sipp D.. Open-loop control of cavity oscillations with harmonic forcings. J. Fluid Mech., 708:439468, 2012.
[34] Sipp D. and Marquet O.. Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comp. Fluid Dyn., 27(5):617635, 2013.
[35] Sipp D., Marquet O., Meliga P., and Barbagallo A.. Dynamics and control of global instabilities in open-flows: a linearized approach. Appl.Mech. Rev., 63(3):030801, 2010.
[36] Toh K. C. and Trefethen L. N.. Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Comp., 17(1):115, 1996.
[37] Trefethen L. N. and Embree M.. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, 2005.
[38] Tuckerman L. S.. Laplacian preconditioning for the inverse Arnoldi method. Commun. Comput. Phys., 18:13361351, 2015.
[39] Tuckerman L. S. and Barkley D.. Bifurcation analysis for timesteppers. In Doedel E. and Tuckerman L. S., editors, NumericalMethods for Bifurcation Problems and Large-Scale Dynamical Systems. Springer, New York, 2000.
[40] van der Vorst H.. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631644, 1992.
[41] Weideman J. A. and Reddy S. C.. A MATLAB differentiation matrix suite. ACM Trans. Math. Software, 26(4):465519, 2000.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between 31st October 2017 - 21st November 2017. This data will be updated every 24 hours.