Skip to main content
    • Aa
    • Aa

Computing Optimal Interfacial Structure of Modulated Phases

  • Jie Xu (a1), Chu Wang (a2), An-Chang Shi (a3) and Pingwen Zhang (a1)

We propose a general framework of computing interfacial structures between two modulated phases. Specifically we propose to use a computational box consisting of two half spaces, each occupied by a modulated phase with given position and orientation. The boundary conditions and basis functions are chosen to be commensurate with the bulk phases. We observe that the ordered nature of modulated structures stabilizes the interface, which enables us to obtain optimal interfacial structures by searching local minima of the free energy landscape. The framework is applied to the Landau-Brazovskii model to investigate interfaces between modulated phases with different relative positions and orientations. Several types of novel complex interfacial structures emerge from the calculations.

Corresponding author
*Corresponding author. Email addresses: (J. Xu), (C. Wang), (A.-C. Shi), (P. Zhang)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] W. Li and M. Müller . Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly. Annu. Rev. Chem. Biomol. Eng., 6:187216, 2015.

[2] J. W. Cahn and J. E. Hilliard . Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys., 28(2):258267, 1958.

[3] J. W. Cahn and J. E. Hilliard . Free Energy of a Nonuniform System. III. Nucleation in a Two-Component Incompressible Fluid. J. Chem. Phys., 31(3):688699, 1959.

[4] W. E. McMullen and D. W. Oxtoby . The equilibrium interfaces of simple molecules. J. Chem. Phys., 88(12):77577765, 1988.

[5] V. Talanquer and D. W. Oxtoby . Nucleation on a solid substrate: A density-functional approach. J. Chem. Phys., 104(4):14831492, 1996.

[6] V. Talanquer and D. W. Oxtoby . Nucleation in a slit pore. J. Chem. Phys., 114(6):27932801, 2001.

[7] Z. Y. Chen and J. Noolandi . Numerical solution of the Onsager problem for an isotropicnematic interface. Phys. Rev. A, 45(4):23892392, 1991.

[8] W. E. McMullen and B. G. Moore . Theoretical Studies of the Isotropic-Nematic Interface. Mol. Cryst. Liq. Cryst., 198(1):107117, 1991.

[9] T. M. Rogers and R. C. Desai . Numerical study of late-stage coarsening for off-critical quenches in the Cahn-Hilliard equation of phase separation. Phys. Rev. B, 39(16):1195611964, 1989.

[10] C. Liu and J. Shen . A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D, 179(3-4):211228, 2003.

[11] R. R. Netz , D. Andelman , and M. Schick . Interfaces of Modulated Phases. Phys. Rev. Lett., 79(6):10581061, 1997.

[13] Y. Tsori , D. Andelman , and M. Schick . Defects in lamellar diblock copolymers: Chevronand ω-shaped tilt boundaries. Phys. Rev. E, 61(3):28482858, 2000.

[14] D. Duque , K. Katsov , and M. Schick . Theory of T junctions and symmetric tilt grain boundaries in pure and mixed polymer systems. J. Chem. Phys., 117(22):1031510320, 2002.

[15] A. Jaatinen , C. V. Achim , K. R. Elder , and T. Ala-Nissila . Thermodynamics of bcc metals in phase-field-crystal models. Phys. Rev. E, 80:031602, 2009.

[16] M. Belushkin and G. Gompper . Twist grain boundaries in cubic surfactant phases. J. Chem. Phys., 130:134712, 2009.

[17] K. R. Elder and M. Grant . Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E, 70:051605, 2004.

[18] A. V. Kyrylyuk and J. G. E. M. Fraaije . Three-Dimensional Structure and Motion of Twist Grain Boundaries in Block Copolymer Melts. Macromolecules, 38:85468553, 2005.

[19] A. D. Pezzutti , D. A. Vega , and M. A. Villar . Dynamics of dislocations in a two-dimensional block copolymer system with hexagonal symmetry. Phil. Trans. R. Soc. A, 369:335350, 2011.

[20] K. Yamada and T. Ohta . Interface between Lamellar and Gyroid Structure in Diblock Copolymer Melts. Journal of the Physical Society of Japan, 76(8):084801, 2007.

[21] C. Wang , K. Jiang , P. Zhang , and A. C. Shi . Origin of epitaxies between ordered phases of block copolymers. Soft Matter, 7:1055210555, 2011.

[24] W. E , W. Ren , and E. V. Eijnden . String method for the study of rare events. Phys. Rev. B, 66:052301, 2002.

[25] W. E , W. Ren , and E. V. Eijnden . Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys., 126:164103, 2007.

[27] G. H. Fredrickson and E. Helfand . Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys., 87(1):697705, 1987.

[28] E. I. Kats , V. V. Lebedev , and A. R. Muratov . Weak crystallization theory. Physics reports, 228(1):191, 1993.

[29] P. Zhang and X. Zhang . An efficient numerical method of Landau-Brazovskii model. J. Comput. Phys., 227:58595870, 2008.

[30] M. F. Schulz , F. S. Bates , K. Almdal , and K. Mortensen . Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Block Copolymer Mixture. Phys. Rev. Lett., 73(1):8689, 1994.

[31] D. A. Hajduk , S. M. Gruner , P. Rangarajan , R. A. Register , L. J. Fetters , C. Honeker , R. J. Albalak , and E. L. Thomas . Observation of a Reversible Thermotropic Order-Order Transition in a Diblock Copolymer. Macromolecules, 27:490501, 1994.

[32] J. Bang and T. P. Lodge . Mechanisms and Epitaxial Relationships between Close-Packed and BCC Lattices in Block Copolymer Solutions. J. Phys. Chem. B, 107(44):1207112081, 2003.

[33] H. W. Park , J. Jung , T. Chang , K. Matsunaga , and H. Jinnai . New Epitaxial Phase Transition between DG and HEX in PS-b-PI. J. Am. Chem. Soc., 131:4647, 2009.

[34] X. Cheng , L. Lin , W. E , P. Zhang , and A. C. Shi . Nucleation of Ordered Phases in Block Copolymers. Phys. Rev. Lett., 104:148301, 2010.

[35] J. Barzilai and J. M. Borwein . Two-point step size gradient methods. IMA J. Numer. Anal., 8:141148, 1988.

[36] B. Zhou , L. Gao , and Y. H. Dai . Gradient Methods with Adaptive Step-Sizes. Computational Optimization and Applications, 35:6986, 2006.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 72 *
Loading metrics...

Abstract views

Total abstract views: 208 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 28th July 2017. This data will be updated every 24 hours.