Skip to main content Accessibility help
×
Home

Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations

  • Sebastian Schmieschek (a1) (a2) and Jens Harting (a1) (a2)

Abstract

  • An abstract is not available for this content so a preview has been provided below. Please use the Get access link above for information on how to access this content.

Copyright

Corresponding author

Corresponding author.Email:j.harting@tue.nl

References

Hide All
[1]Tabeling, P., Introduction to Microfluidics, Oxford University Press, 2005.
[2]Young, T., An essay on the cohesion of fluids, Phil. Trans. Phys. Sci. Eng., 95(-1) (1805), 65–87.
[3]Wenzel, R. N., Surface roughness and contact angle, J. Phys. Chem., 53(9) (1949), 1466–1467.
[4]Cassie, A. B. D., Wettability of porous surfaces, Trans. Faraday. Soc., 40 (1944), 546–551.
[5]Hyväluoma, J., and Harting, J., Slip flow over structured surfaces with entrapped microbub-bles, Phys. Rev. Lett., 100 (2008), 246001.
[6]Yeh, K.-Y., Yeh, J. C., and Changg, J., Contact angle hysteresis on regular pillar-like hydropho-bic surfaces, Langmuir., 24(1) (2008), 245–251.
[7]Dorrer, C., and Rühe, J., Condensation and wetting transitions on microstructured ultrahy-drophobic surfaces, Langmuir., 23(7) (2007), 3820–3824.
[8]Pirat, C., Sbragaglia, M., Peters, A. M., Borkent, B. M., Lammertink, R. G. H., Wessling, M., and Lohse, D., Multiple time scale dynamics in the breakdown of superhydrophobicity, Euro-phys. Lett., 81(6) (2008), 66002.
[9]Kusumaatmaja, H., Blow, M. L., Dupuis, A., and Yeomans, J. M., The collapse transition on superhydrophobic surfaces, Europhys. Lett., 81(3) (2008), 36003.
[10]Vandembroucq, D., and Roux, S., Conformal mapping on rough boundaries,applications to harmonic problems, Phys. Rev. E., 55(5) (1997), 6171–6185.
[11]Marmur, A., From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials, Langmuir., 24(14) (2008), 7573– 7579.
[12]Roach, P., Shirtcliffe, N., and Newton, M., Progess in superhydrophobic surface development, Soft. Matter., 4(2) (2008), 224–240.
[13]Bouzigues, C. I., Tabeling, P., and Bocquet, L., Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces, Phys. Rev. Lett., 101(11) (2008), 114503.
[14]Kunert, C., and Harting, J., Simulation of fluid flow in hydrophobic rough micro channels, Int. J. Comput. Fluid.Dyn., 22 (2008), 475–480.
[15]Shan, X., and Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E., 47(3) (1993), 1815–1817.
[16]Shan, X., and Chen, H., Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E., 49(4) (1994), 2941–2948.
[17]Swift, M. R., Osborn, W. R., and Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. E., 75(5) (1995), 830–833.
[18]Swift, M. R., Orlandini, E., Osborn, W. R., and Yeomans, J. M., Lattice-Boltzmann simulations of liquid-gas and binary fluid mixtures, Phys. Rev. E., 54(5) (1996), 5041–5052.
[19]Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A., 43(8) (1991), 4320–4327.
[20]Harting, J., Kunert, C., and Herrmann, H., Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels, Europhys. Lett., 75(2) (2006), 328–334.
[21]Kunert, C., and Harting, J., Roughness induced apparent boundary slip in microchannel flows, Phys. Rev. Lett., 99 (2007), 176001.
[22]Kunert, C., and Harting, J., On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels, Prog. CFD., 8 (2008), 197–205.
[23]Benzi, R., Biferale, L., Sbragaglia, M., Succi, S., and Toschi, F., Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle, Phys. Rev. E., 74 (2006), 021509.
[24]Huang, H., Thorne, D. T., Schaap, M.G., and Sukop, M. C., Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E., 76 (2007), 066701.
[25]Higuera, F. J., Succi, S., and Benzi, R., Lattice gas dynamics with enhanced collisions, Euro-phys. Lett., 9(4) (1989), 345–349.
[26]Bhatnagar, P. L., Gross, E. P., and Krook, M., Model for collision processes in gases I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94(3) (1954), 511–525.
[27]Love, P. J., Nekovee, M., Coveney, P. V., Chin, J., González-Segredo, N., and Martin, J. M. R., Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and lattice-gas methods, Comput. Phys. Commun., 153 (2003), 340–358.
[28]Harting, J., Harvey, M., Chin, J., Venturoli, M., and Coveney, P. V., Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids, Phil. Trans. R. Soc. London. A., 363 (2005), 1895–1915.
[29]Chen, S., Chen, H., Martínez, D., and Matthaeus, W. H., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67(27) (1991), 3776–3779.
[30]Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, 2001.
[31]de Gennes, P. G., Wetting: statics and dynamics, Rev. Mod. Phys., 57 (1985), 827–863.
[32]González-Segredo, N., and Coveney, P. V., Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-Boltzmann simulations, Phys. Rev. E., 69 (2004), 061501.

Keywords

Related content

Powered by UNSILO

Contact Angle Determination in Multicomponent Lattice Boltzmann Simulations

  • Sebastian Schmieschek (a1) (a2) and Jens Harting (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.