Skip to main content

Dynamics of the Formation of the Nitrogen-Vacancy Center in Diamond

  • Amihai Silverman (a1), Joan Adler (a2) and Rafi Kalish (a2) (a3)

We present results of simulations of the energetics and dynamics involved in the realization of the NV (nitrogen-vacancy) center in diamond. We use the self-consistent charge-density functional tight-binding approximation and show that when the nitrogen resides on a single substitutional site, it fails to attract a vacancy, hence no NV center can be formed. However, if it occupies a split interstitial site and two vacancies reside on the second or third neighbor sites, an NV center will form following annealing at temperatures as low as 300°C and 650°C, respectively. These results provide guidelines to experimentalists on how to increase the efficiency of NV formation in diamond.

Corresponding author
*Corresponding author. Email (A. Silverman), (J. Adler), (R. Kalish)
Hide All
[1]Awschalom D. D., Epstein R., and Hanson R., Scientific American 297(4), 84 (2007).
[2]Kalish R., in MRS bulletin, Vol. 38, edited by Acosta V. and Hemmer P. (2013).
[3]Kalish R., Nucl. Instr. Methods B 272, 42 (2012).
[4]Kalish R., Ion implantation in diamond for quantum information processing: doping and damaging, in Quantum information processing with diamond principles and applications, Vol. 63, edited by Prawer S. and Aharonovch I. (WPEO, 2014) Chap. 3.
[5]Botsoa J., Sauvage T., Adam M.-P., Desgardin P., Leoni E., Courtois B., Treussart F., and Barthe M.-F., Phys. Rev. B 84, 125209 (2011).
[6]Collins A. T. and Kiflawi I. J., J. Phys. Condens. Matter 21, 364209 (2009).
[7]Davies G., Nature 269, 498 (1977).
[8]Rabeau J. R., Reichart P., Tamanyan G., Jamieson D. N., Prawer S., Jelezko F., Gaebel T., Popa I., Domhan M., and Wrachtrup J., Appl. Phys. Lett. 88, 023113 (2006).
[9]Pezzagna S., Naydenov B., Jelezko F., Wrachtrup J., and Meijer J., New J. Phys. 12, 065017 (2010).
[10]Acosta V. M., Bauch E., Ledbetter M. P., Santori C., Fu K.-M.C., Barclay P.E., Beausoleil R.G., Linget H., Roch J.F., Treussart F., Chemerisov S., Gawlik W., and Budker D., Phys. Rev. B 80, 115202 (2009).
[11]Mainwood A., Phys. Rev. B 49, 7934 (1994).
[12]Luszczek M., Laskowski R., and Horodecki P., Physica B 348, 292 (2004).
[13]Doherty M., Hossain F., and Hollenberg L., Physics Procedia 3, 1525 (2010).
[14]Goss J. P., Coomer B. J., Jones R., Shaw T. D., Briddon P. R., Rayson M., and Oberg S., Phys. Rev. B 63, 195208 (2001).
[15]Davies G., Lawson S. C., Collins A. T., Mainwood A., and Sharp S. J., Phys. Rev. B 46, 13157 (1992).
[16]Kiflawi I., Mainwood A., Kanda H., and Fisher D., Phys. Rev. B 54, 16719 (1996).
[17]Dek P., Aradi B., Kaviani M., Frauenheim T., and Gali A., Phys. Rev. B 89, 75203 (2014).
[18]Kovalenko A., Petrkov V., Ashcheulov P., Zli S., Nesldek M., Kraus I., and Kratochvlov I., Physica Status Solidi (A) 209, 1769 (2012).
[19]Goss J. P., Briddon P. R., Papagiannidis S., and Jones R., Phys. Rev. B 70, 235208 (2004).
[20]Jones R., Ewels C., Goss J., Miro J., Deak P., Oberg S., and Rasmussen F. B., Semlcond. Sci. Technol. 9, 2145 (1994).
[21]Karoui F. S. and Karoui A., J. Appl. Phys. 108, 033513 (2010).
[22]Goss J. P., Hahn I., Jones R., Briddon P. R., and Oberg S., Phys. Rev. B 67, 045206 (2003).
[23]Naydenov B., Reinhard F., Lammle A., Richter V., Kalish R., D'Haenens-Johansson U. F. S., Newton M., Jelezko F., and Wrachtrup J., Appl. Phys. Lett. 97, 242511 (2010).
[24]Schwartz J., Aloni S., Ogletree D. F., and Schenkel T., New J. Phys. 14, 043024 (2012).
[25]Gali A., Fyta M., and Kaxiras E., Phys. Rev. B 77, 155206 (2008).
[26]Saada D., Adler J., and Kalish R., Int. J. Mod. Phys. C 09, 61 (1998).
[27]Silverman A., Adler J., and Kalish R., Phys. Rev. B 83, 224206 (2011).
[28]Fairchild B. A., Olivero P., Rubanov S., Greentree A. D., Waldermann F., Taylor R. A., Walmsley I., Smith J. M., Huntington S., Gibson B. C., Jamieson D. N., and Prawer S., Adv. Mater. 20, 4793 (2008).
[29]Porezag D., Frauenheim T., Kohler T., Seifert G., and Kaschner R., Phys. Rev. B 51, 12947 (1995).
[30]Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim T., Suhai S., and Seifert G., Phys. Rev. B 58, 7260 (1998),
[31]Koehler C. and Frauenheim T., Surf. Sci. 600, 453 (2006).
[32]Bradac C., Gaebel T., Naidoo N., Sellars M. J., Twamley J., Brown L. J., Barnard A. S., Plakhotnik T., Zvyagin A. V., and Rabeau J. R., Nature Nanotechnology 5, 345 (2010).
[33]Adler J., Koenka Y., and Silverman A., Physics Procedia 15, 7 (2011).
[34]Peled D., Silverman A., and Adler J., J. Phys.: Conf. Ser. 454, 012076 (2013),
[35]Adler J., Silverman A., Ierushalmi N., Sorkin A. and Kalish R., VIIth Brazilian Meeting on Simulational Physics, Journal of Physics: Conference Proceedings, 487, 01215 (2014),
[36]Adler J., Silverman A., Ierushalmi N., Sorkin A., and Kalish R., J. Phys.: Conf. Ser. 487, 012015 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 163 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.