Skip to main content Accessibility help
×
Home

Efficient Variable-Coefficient Finite-Volume Stokes Solvers

  • Mingchao Cai (a1), Andy Nonaka (a2), John B. Bell (a2), Boyce E. Griffith (a3) and Aleksandar Donev (a1)...

Abstract

We investigate several robust preconditioners for solving the saddle-point linear systems that arise from spatial discretization of unsteady and steady variable-coefficient Stokes equations on a uniform staggered grid. Building on the success of using the classical projection method as a preconditioner for the coupled velocity pressure system [B. E. Griffith, J. Comp. Phys., 228 (2009), pp. 7565-7595], as well; established techniques for steady and unsteady Stokes flow in the finite-element literature, we construct preconditioners that employ independent generalized Helmholtz and Poisson solvers for the velocity and pressure subproblems. We demonstrate that only a single cycle of a standard geometric multigrid algorithm serves as an effective inexact solver for each of these subproblems. Contrary to traditional wisdom, we find that the Stokes problem can be solved nearly as efficiently as the independent pressure and velocity subproblems, making the overall cost of solving the Stokes system comparable to the cost of classical projection or fractional step methods for incompressible flow, even for steady flow and in the presence of large density and viscosity contrasts. Two of the five preconditioners considered here are found to be robust to GMRES restarts and to increasing problem size, making them suitable for large-scale problems. Our work opens many possibilities for constructing novel unsplit temporal integrators for finite-volume spatial discretizations of the equations of low Mach and incompressible flow dynamics.

Copyright

Corresponding author

References

Hide All
[1]Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, Journal of Computational Physics, 142 (1998), pp. 146.
[2]Almgren, A. S., Bell, J. B., and Szymczak, W. G., A numerical method for the incompressible Navier-Stokes equations based on an approximate projection, SIAM Journal on Scientific Computing, 17 (1996), pp. 358369.
[3]Bell, J. B., Colella, P., and Glaz, H. M., A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85 (1989), pp. 257283.
[4]Benzi, M., Preconditioning techniques for large linear systems: A survey, Journal of Computational Physics, 182 (2002), pp. 418477.
[5]Benzi, M., Golub, G. H., and Liesen, J., Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1137.
[6]Briggs, W. L., Henson, V., and McCormick, S., A Multigrid Tutorial Society for Industrial and Applied Mathematics, Philadelphia, PA, (1987).
[7]Brown, D. L., Cortez, R., and Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 168 (2001), pp. 464499.
[8]Burstedde, C., Ghattas, O., Stadler, G., Tu, T., and Wilcox, L. C., Parallel scalable adjoint-based adaptive solution of variable-viscosity stokes flow problems, Computer Methods in Applied Mechanics and Engineering, 198 (2009), pp. 16911700.
[9]Cahouet, J. and Chabard, J.-P., Some fast 3D finite element solvers for the generalized stokes problem, International Journal for Numerical Methods in Fluids, 8 (1988), pp. 869895.
[10] Z.-Cao, H., Constraint Schur complement preconditioners for nonsymmetric saddle point problems, Applied Numerical Mathematics, 59 (2009), pp. 151169.
[11]Chorin, A. J., Numerical solution of the Navier-Stokes equations, Journal of Computational Mathematics, 22 (1968), pp. 745762.
[12]Delong, S., Griffith, B. E., Vanden-Eijnden, E., and Donev, A., Temporal integrators for fluctuating hydrodynamics, Physical Review E, 87 (2013), p. 033302.
[13]Donev, A., Fai, T. G., and Vanden-Eijnden, E., A reversible mesoscopic model of diffusion in liquids: From giant fluctuations to Fick's law, Journal of Statistical Mechanics: Theory and Experiment, 2014 (2014), p. P04004.
[14]Donev, A., Nonaka, A. J., Sun, Y., Fai, T. G., Garcia, A. L., and Bell, J. B., Low mach number fluctuating hydrodynamics of diffusively mixing fluids, Communications in Applied Mathematics and Computational Science, 9 (2014), pp. 47105.
[15]E, W. and Liu, J., Gauge method for viscous incompressible flows, Communications in Mathematical Sciences, 1 (2003), pp. 317332.
[16]Eiermann, M. and Ernst, O. G., Geometric aspects of the theory of Krylov subspace methods, Acta Numerica, 10 (2001), pp. 251312.
[17]Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tuminaro, R., Block preconditioners based on approximate commutators, SIAM Journal on Scientific Computing, 27 (2006), pp. 16511668.
[18]Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, Journal of Computational Physics, 227 (2008), pp. 17901808.
[19]Elman, H. C., Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM Journal on Scientific Computing, 20 (1999), pp. 12991316.
[20]Elman, H. C., Silvester, D. J., and Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics: with Applications in Incompressible Fluid Dynamics, OUP Oxford, 2005.
[21]Feng, X. and He, Y., Modified homotopy perturbation method for solving the Stokes equations, Computers & Mathematics with Applications, 61 (2011), pp. 22622266.
[22]Feng, X. and Shao, L., On the generalized Sor-like methods for saddle point problems, Journal of Applied Mathematics and Informatics, 28 (2010), pp. 663677.
[23]Fischer, B., Ramage, A., Silvester, D. J., and Wathen, A. J., Minimum residual methods for augmented systems, BIT Numerical Mathematics, 38 (1998), pp. 527543.
[24]Furuichi, M., May, D. A., and Tackley, P. J., Development of a stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic, Journal of Computational Physics, 230 (2011), pp. 88358851.
[25]Geenen, T., Vuik, C., Segal, G., MacLachlan, S., et al., On iterative methods for the incompressible Stokes problem, International Journal for Numerical Methods in Fluids, 65 (2011), pp.11801200.
[26]Gerya, T. V., May, D. A., and Duretz, T., An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity, Geochemistry, Geo-physics, Geosystems, 14 (2013), pp. 12001225.
[27]Griffith, B., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, Journal of Computational Physics, 228 (2009), pp. 75657595.
[28]Griffith, B., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), pp. 317345.
[29]Grinevich, P., An iterative solution method for the stokes problem with variable viscosity, Moscow University Mathematics Bulletin, 65 (2010), pp. 119122.
[30]Grinevich, P. and Olshanskii, M., An iterative method for the Stokes-type problem with variable viscosity, SIAM Journal on Scientific Computing, 31 (2009), pp. 39593978.
[31]Guermond, J., Minev, P., and Shen, J., An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 60116045.
[32]Harlow, F. and Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces, Physics of Fluids, 8 (1965), pp. 21822189.
[33]Hu, Q. and Zou, J., Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems, SIAM Journal on Optimization, 16 (2006), pp. 798825.
[34]Ipsen, I. C., A note on preconditioning nonsymmetric matrices, SIAM Journal on Scientific Computing, 23 (2001), pp. 10501051.
[35]Kay, D., Loghin, D., and Wathen, A., A preconditioner for the steady-state Navier-Stokes equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237256.
[36]Kay, D. A., Gresho, P. M., Griffiths, D. F., and Silvester, D. J., Adaptive time-stepping for in-compressible flow Part II: Navier-Stokes equations, SIAM Journal on Scientific Computing, 32 (2010), pp. 111128.
[37]Mardal, K.-A. and Winther, R., Uniform preconditioners for the time dependent stokes problem, Numerische Mathematik, 98 (2004), pp. 305327.
[38] —, Preconditioning discretizations of systems of partial differential equations, Numerical Linear Algebra with Applications, 18 (2011), pp. 140.
[39]Murphy, M. F., Golub, G. H., and Wathen, A. J., A note on preconditioning for indefinite linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 19691972.
[40]Olshanskii, M., Multigrid analysis for the time dependent stokes problem, Mathematics of Computation, 81 (2012), pp. 5779.
[41]Olshanskii, M. A. and Chizhonkov, E. V., On the best constant in the inf-sup-condition for elongated rectangular domains, Mathematical Notes, 67 (2000), pp. 325332.
[42]Olshanskii, M. A., Peters, J., and Reusken, A., Uniform preconditioners for a parameter de-pendent saddle point problem with application to generalized stokes interface equations, Numerische Mathematik, 105 (2006), pp. 159191.
[43]Pember, R., Howell, L., Bell, J., Colella, P., Crutchfield, W., Fiveland, W., and Jessee, J., An adap-tive projection method for unsteady, low-Mach number combustion, Combustion Science and Technology, 140 (1998), pp. 123168.
[44]Quarteroni, A., Saleri, F., and Veneziani, A., Factorization methods for the numerical approx-imation of Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 188 (2000), pp. 505526.
[45]Rendleman, C., Beckner, V., Lijewski, M., Crutchfield, W., and Bell, J., Parallelization of structured, hierarchical adaptive mesh refinement algorithms, Computing and Visualization in Science, 3 (2000), pp. 147157. spoftware available at https://ccse.lbl.gov/BoxLib.
[46]Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific Computing, 14 (1993), pp. 461469.
[47]Saad, Y. and Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856869.
[48]Shin, D. and Strikwerda, J. C., Inf-sup conditions for finite-difference approximations of the Stokes equations, Journal of the Australian Mathematical Society-Series B, 39 (1997), pp. 121134.
[49]Turek, S., Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computional Approach, vol. 6, Springer Verlag, 1999.
[50]Usabiaga, F. B., Bell, J. B., Delgado-Buscalioni, R., Donev, A., Fai, T. G., Griffith, B. E., and Peskin, C. S., Staggered schemes for fluctuating hydrodynamics, SIAM Journal of Multiscale Modeling and Simulation, 10 (2012), pp. 13691408.
[51]Verfurth, R., A multilevel algorithm for mixed problems, SIAM Journal on Numerical Analysis, 21 (1984), pp. 264271.

Keywords

Efficient Variable-Coefficient Finite-Volume Stokes Solvers

  • Mingchao Cai (a1), Andy Nonaka (a2), John B. Bell (a2), Boyce E. Griffith (a3) and Aleksandar Donev (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed