[1]Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, Journal of Computational Physics, 142 (1998), pp. 1–46.
[2]Almgren, A. S., Bell, J. B., and Szymczak, W. G., A numerical method for the incompressible Navier-Stokes equations based on an approximate projection, SIAM Journal on Scientific Computing, 17 (1996), pp. 358–369.
[3]Bell, J. B., Colella, P., and Glaz, H. M., A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85 (1989), pp. 257–283.
[4]Benzi, M., Preconditioning techniques for large linear systems: A survey, Journal of Computational Physics, 182 (2002), pp. 418–477.
[5]Benzi, M., Golub, G. H., and Liesen, J., Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1–137.
[6]Briggs, W. L., Henson, V., and McCormick, S., A Multigrid Tutorial Society for Industrial and Applied Mathematics, Philadelphia, PA, (1987).
[7]Brown, D. L., Cortez, R., and Minion, M. L., Accurate projection methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 168 (2001), pp. 464–499.
[8]Burstedde, C., Ghattas, O., Stadler, G., Tu, T., and Wilcox, L. C., Parallel scalable adjoint-based adaptive solution of variable-viscosity stokes flow problems, Computer Methods in Applied Mechanics and Engineering, 198 (2009), pp. 1691–1700.
[9]Cahouet, J. and Chabard, J.-P., Some fast 3D finite element solvers for the generalized stokes problem, International Journal for Numerical Methods in Fluids, 8 (1988), pp. 869–895.
[10] Z.-Cao, H., Constraint Schur complement preconditioners for nonsymmetric saddle point problems, Applied Numerical Mathematics, 59 (2009), pp. 151–169.
[11]Chorin, A. J., Numerical solution of the Navier-Stokes equations, Journal of Computational Mathematics, 22 (1968), pp. 745–762.
[12]Delong, S., Griffith, B. E., Vanden-Eijnden, E., and Donev, A., Temporal integrators for fluctuating hydrodynamics, Physical Review E, 87 (2013), p. 033302.
[13]Donev, A., Fai, T. G., and Vanden-Eijnden, E., A reversible mesoscopic model of diffusion in liquids: From giant fluctuations to Fick's law, Journal of Statistical Mechanics: Theory and Experiment, 2014 (2014), p. P04004.
[14]Donev, A., Nonaka, A. J., Sun, Y., Fai, T. G., Garcia, A. L., and Bell, J. B., Low mach number fluctuating hydrodynamics of diffusively mixing fluids, Communications in Applied Mathematics and Computational Science, 9 (2014), pp. 47–105.
[15]E, W. and Liu, J., Gauge method for viscous incompressible flows, Communications in Mathematical Sciences, 1 (2003), pp. 317–332.
[16]Eiermann, M. and Ernst, O. G., Geometric aspects of the theory of Krylov subspace methods, Acta Numerica, 10 (2001), pp. 251–312.
[17]Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tuminaro, R., Block preconditioners based on approximate commutators, SIAM Journal on Scientific Computing, 27 (2006), pp. 1651–1668.
[18]Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, Journal of Computational Physics, 227 (2008), pp. 1790–1808.
[19]Elman, H. C., Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM Journal on Scientific Computing, 20 (1999), pp. 1299–1316.
[20]Elman, H. C., Silvester, D. J., and Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics: with Applications in Incompressible Fluid Dynamics, OUP Oxford, 2005.
[21]Feng, X. and He, Y., Modified homotopy perturbation method for solving the Stokes equations, Computers & Mathematics with Applications, 61 (2011), pp. 2262–2266.
[22]Feng, X. and Shao, L., On the generalized Sor-like methods for saddle point problems, Journal of Applied Mathematics and Informatics, 28 (2010), pp. 663–677.
[23]Fischer, B., Ramage, A., Silvester, D. J., and Wathen, A. J., Minimum residual methods for augmented systems, BIT Numerical Mathematics, 38 (1998), pp. 527–543.
[24]Furuichi, M., May, D. A., and Tackley, P. J., Development of a stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic, Journal of Computational Physics, 230 (2011), pp. 8835–8851.
[25]Geenen, T., Vuik, C., Segal, G., MacLachlan, S., et al., On iterative methods for the incompressible Stokes problem, International Journal for Numerical Methods in Fluids, 65 (2011), pp.1180–1200.
[26]Gerya, T. V., May, D. A., and Duretz, T., An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity, Geochemistry, Geo-physics, Geosystems, 14 (2013), pp. 1200–1225.
[27]Griffith, B., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, Journal of Computational Physics, 228 (2009), pp. 7565–7595.
[28]Griffith, B., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), pp. 317–345.
[29]Grinevich, P., An iterative solution method for the stokes problem with variable viscosity, Moscow University Mathematics Bulletin, 65 (2010), pp. 119–122.
[30]Grinevich, P. and Olshanskii, M., An iterative method for the Stokes-type problem with variable viscosity, SIAM Journal on Scientific Computing, 31 (2009), pp. 3959–3978.
[31]Guermond, J., Minev, P., and Shen, J., An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 60116045.
[32]Harlow, F. and Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces, Physics of Fluids, 8 (1965), pp. 2182–2189.
[33]Hu, Q. and Zou, J., Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point problems, SIAM Journal on Optimization, 16 (2006), pp. 798–825.
[34]Ipsen, I. C., A note on preconditioning nonsymmetric matrices, SIAM Journal on Scientific Computing, 23 (2001), pp. 1050–1051.
[35]Kay, D., Loghin, D., and Wathen, A., A preconditioner for the steady-state Navier-Stokes equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 237–256.
[36]Kay, D. A., Gresho, P. M., Griffiths, D. F., and Silvester, D. J., Adaptive time-stepping for in-compressible flow Part II: Navier-Stokes equations, SIAM Journal on Scientific Computing, 32 (2010), pp. 111–128.
[37]Mardal, K.-A. and Winther, R., Uniform preconditioners for the time dependent stokes problem, Numerische Mathematik, 98 (2004), pp. 305–327.
[38] —, Preconditioning discretizations of systems of partial differential equations, Numerical Linear Algebra with Applications, 18 (2011), pp. 1–40.
[39]Murphy, M. F., Golub, G. H., and Wathen, A. J., A note on preconditioning for indefinite linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.
[40]Olshanskii, M., Multigrid analysis for the time dependent stokes problem, Mathematics of Computation, 81 (2012), pp. 57–79.
[41]Olshanskii, M. A. and Chizhonkov, E. V., On the best constant in the inf-sup-condition for elongated rectangular domains, Mathematical Notes, 67 (2000), pp. 325–332.
[42]Olshanskii, M. A., Peters, J., and Reusken, A., Uniform preconditioners for a parameter de-pendent saddle point problem with application to generalized stokes interface equations, Numerische Mathematik, 105 (2006), pp. 159–191.
[43]Pember, R., Howell, L., Bell, J., Colella, P., Crutchfield, W., Fiveland, W., and Jessee, J., An adap-tive projection method for unsteady, low-Mach number combustion, Combustion Science and Technology, 140 (1998), pp. 123–168.
[44]Quarteroni, A., Saleri, F., and Veneziani, A., Factorization methods for the numerical approx-imation of Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 188 (2000), pp. 505–526.
[45]Rendleman, C., Beckner, V., Lijewski, M., Crutchfield, W., and Bell, J., Parallelization of structured, hierarchical adaptive mesh refinement algorithms, Computing and Visualization in Science, 3 (2000), pp. 147–157. spoftware available at https://ccse.lbl.gov/BoxLib. [46]Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific Computing, 14 (1993), pp. 461–469.
[47]Saad, Y. and Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856–869.
[48]Shin, D. and Strikwerda, J. C., Inf-sup conditions for finite-difference approximations of the Stokes equations, Journal of the Australian Mathematical Society-Series B, 39 (1997), pp. 121–134.
[49]Turek, S., Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computional Approach, vol. 6, Springer Verlag, 1999.
[50]Usabiaga, F. B., Bell, J. B., Delgado-Buscalioni, R., Donev, A., Fai, T. G., Griffith, B. E., and Peskin, C. S., Staggered schemes for fluctuating hydrodynamics, SIAM Journal of Multiscale Modeling and Simulation, 10 (2012), pp. 1369–1408.
[51]Verfurth, R., A multilevel algorithm for mixed problems, SIAM Journal on Numerical Analysis, 21 (1984), pp. 264–271.