Skip to main content

Electrophoresis of a Cylinder in a Cylindrical Tube

  • Huicheng Feng (a1) and Teck Neng Wong (a1)

Electrophoresis of a cylinder suspended in a cylindrical tube is analytically studied in the limit of thin electric double layer approximation. The electric and fluid flow fields within the annulus, and the cylinder velocities are analytically obtained in bipolar coordinates. The results are analyzed with various values of dimensionless parameters: eccentricity, cylinder-to-tube radius ratio and tube-to-cylinder zeta potential ratio (i.e., tube-to-cylinder velocity scale ratio). The analysis shows that microvortices are generated within the annulus. By changing the parameters, different flow patterns can be created, which shows potential for mixing enhancement in micro/nanofluidics. Moreover, the cylinder not only translates but also rotates when the cylinder and tube are eccentric. The cylinder rotation might be utilized as a micromotor or an electric field detector. The cylinder trajectories show that the cylinder may approach the tube wall or rest within the tube depending on the zeta potential ratio.

Corresponding author
*Corresponding author. Email addresses: (T. N. Wong), (H. Feng)
Hide All
[1] Berger M. J. and Collela P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989) 6284.
[2] Ajdari A., Pumping liquids using asymmetric electrode arrays, Phys. Rev. E 61 (1) (2000) R45.
[3] Yoon M. S., Kim B. J., Sung H. J., Pumping and mixing in a microchannel using ac asymmetric electrode arrays, Int. J. Heat Fluid Flow 29 (1) (2008) 269280.
[4] Cartier C. A., Drews A. M., Bishop K. J., Microfluidic mixing of nonpolar liquids by contact charge electrophoresis, Lab. Chip 14 (21) (2014) 42304236.
[5] Feng H., Wong T. N., Che Z., Marcos, Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus, Phys. Fluids 28 (6).
[6] Daghighi Y., Li D., Micro-valve using induced-charge electrokinetic motion of janus particle, Lab. Chip 11 (17) (2011) 29292940.
[7] Sugioka H., Elastic valve using induced-charge electro-osmosis, Phys. Rev. Applied 3 (6) (2015) 064001.
[8] Ren Y., Liu W., Jia Y., Tao Y., Shao J., Ding Y., Jiang H., Induced-charge electroosmotic trapping of particles, Lab. Chip 15 (10) (2015) 21812191.
[9] Schnitzer O., Frankel I., Yariv E., Electrophoresis of bubbles, J. Fluid Mech. 753 (2014) 4979.
[10] Schnitzer O., Frankel I., Yariv E., Electrokinetic flows about conducting drops, J. Fluid Mech. 722 (2013) 394423.
[11] Masliyah J. H., Bhattacharjee S., Electrokinetic Phenomena, John Wiley & Sons, Inc., 2005, Ch. 7, pp. 221227.
[12] Ohshima H., Electrophoresis of colloidal particles in a salt-free medium, Chem. Eng. Sci. 61 (7) (2006) 21042107.
[13] Loewenberg M., Davis R. H., Near-contact electrophoretic particle motion, J. Fluid Mech. 288 (1995) 103122.
[14] Yariv E., Brenner H., Near-contact electrophoretic motion of a sphere parallel to a planar wall, J. Fluid Mech. 484 (2003) 85111.
[15] Lee T. C., Keh H. J., Electrophoresis of a spherical particle in a spherical cavity, Microfluid Nanofluid 16 (6) (2014) 11071115.
[16] Hsu J.-P., Yee C.-P., Yeh L.-H., Importance of electroosmotic flow and multiple ionic species on the electrophoresis of a rigid sphere in a charge-regulated zwitterionic cylindrical pore, Langmuir 28 (29) (2012) 1094210947.
[17] Chiu H. C., Keh H. J., Electrophoresis of a colloidal sphere with double-layer polarization in a microtube, Microfluid Nanofluid 20 (4) (2016) 113.
[18] Unni H. N., Keh H. J., Yang C., Analysis of electrokinetic transport of a spherical particle in a microchannel, Electrophoresis 28 (4) (2007) 658664.
[19] Chang Y. C., Keh H. J., Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls, J. Colloid Interface Sci. 322 (2) (2008) 634653.
[20] Chen W. J., Keh H. J., Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness, J. Phys. Chem. B 117 (33) (2013) 97579767.
[21] Tseng S., Hsu J.-P., Lo H.-M., Yeh L.-H., Electrophoresis of a soft sphere in a necked cylindrical nanopore, Phys. Chem. Chem. Phys. 15 (28) (2013) 1175811765.
[22] Hsu J.-P., Kuo C.-C., Electrophoresis of a soft toroid coaxially along the axis of a cylindrical pore, Chem. Eng. Sci. 64 (24) (2009) 52475254.
[23] Keh H. J., Horng K. D., Kuo J., Boundary effects on electrophoresis of colloidal cylinders, J. Fluid Mech. 231 (1991) 211228.
[24] Feng H., Wong T. N., Pair interactions between conducting and non-conducting cylinders under uniform electric field, Chem. Eng. Sci. 142 (2016) 1222.
[25] Hsu J.-P., Chen Z.-S., Lee D.-J., Tseng S., Su A., Effects of double-layer polarization and electroosmotic flow on the electrophoresis of a finite cylinder along the axis of a cylindrical pore, Chem. Eng. Sci. 63 (18) (2008) 45614569.
[26] He Y.-Y., Wu E., Lee E., Electrophoresis in suspensions of charged porous spheres in salt-free media, Chem. Eng. Sci. 65 (20) (2010) 55075516.
[27] Bhattacharyya S., De S., Gopmandal P. P., Electrophoresis of a colloidal particle embedded in electrolyte saturated porous media, Chem. Eng. Sci. 118 (2014) 184191.
[28] Khair A. S., Posluszny D. E., Walker L. M., Coupling electrokinetics and rheology: electrophoresis in non-newtonian fluids, Phys. Rev. E 85 (1) (2012) 016320.
[29] Zhao C., Yang C., Electrokinetics of non-newtonian fluids: a review, Adv. Colloid Interface Sci. 201 (2013) 94108.
[30] Squires T. M., Bazant M. Z., Breaking symmetries in induced-charge electro-osmosis and electrophoresis, J. Fluid Mech. 560 (2006) 65101.
[31] Boymelgreen A., Yossifon G., Park S., Miloh T., Spinning janus doublets driven in uniform ac electric fields, Phys. Rev. E 89 (1) (2014) 011003.
[32] Dose E. V., Guiochon G., Timescales of transient processes in capillary electrophoresis, J. Chromatogr. A 652 (1) (1993) 263275.
[33] Söderman O., Jönsson B., Electro-osmosis: Velocity profiles in different geometries with both temporal and spatial resolution, J. Chem. Phys. 105 (23) (1996) 1030010311.
[34] Jackson J. D., Classical Electrodynamics, Wiley, 1999.
[35] Jeffery G., The rotation of two circular cylinders in a viscous fluid, Proc. R. Soc. London, Ser. A 101 (709) (1922) 169174.
[36] Feng H., Wong T. N., Che Z., Induced charge electrophoresis of a conducting cylinder in a nonconducting cylindrical pore and its micromotoring application, Phys. Rev. Fluids 1 (2016) 044103.
[37] Morrison F., Electrophoresis of a particle of arbitrary shape, J. Colloid Interface Sci. 34 (2) (1970) 210214.
[38] Cummings E. B., Griffiths S., Nilson R., Paul P., Conditions for similitude between the fluid velocity and electric field in electroosmotic flow, Anal. Chem. 72 (11) (2000) 25262532.
[39] Yariv E., The electrophoretic mobilities of a circular cylinder in close proximity to a dielectric wall, J. Fluid Mech. 804.
[40] Saintillan D., Nonlinear interactions in electrophoresis of ideally polarizable particles, Phys. Fluids 20 (6) (2008) 067104.
[41] Feng H., Wong T.N., Marcos, Pair interactions in induced charge electrophoresis of conducting cylinders, Int. J. Heat Mass Trans. 88 (2015) 674683.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between 28th July 2017 - 18th November 2017. This data will be updated every 24 hours.