Skip to main content
    • Aa
    • Aa

Equilibrium Configurations of Classical Polytropic Stars with a Multi-Parametric Differential Rotation Law: A Numerical Analysis

  • Federico Cipolletta (a1) (a2), Christian Cherubini (a3) (a4), Simonetta Filippi (a3) (a4), Jorge A. Rueda (a1) (a2) (a5) and Remo Ruffini (a1) (a2) (a5)...

In this paper we analyze in detail the equilibrium configurations of classical polytropic stars with a multi-parametric differential rotation law of the literature using the standard numerical method introduced by Eriguchi and Mueller. Specifically we numerically investigate the parameters’ space associated with the velocity field characterizing both equilibrium and non-equilibrium configurations for which the stability condition is violated or the mass-shedding criterion is verified.

Corresponding author
*Corresponding author. Email addresses: (F. Cipolletta), (C. Cherubini), (F. Filippi), (J. A. Rueda), (R. Ruffini)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[3] R. A. James , 1964: The Structure and Stability of Rotating Gas Masses, Astrophys. J., 140, 552582.

[8] S. Filippi ; R. Ruffini ; A. Sepulveda 1990: On the generalization of Dedekind-Riemann sequences to nonlinear velocities., Europhys. Lett., 12, 735740.

[9] S. Filippi ; R. Ruffini ; A. Sepulveda , 1990: Nonlinear velocities in generalized Riemann ellipsoids., Nuovo Cim. B, 105, 10471054.

[11] S. Filippi , R. Ruffini and A. Sepulveda , 1996: On the Implications of the nth-Order Virial Equations for Heterogeneous and Concentric Jacobi, Dedekind, and Riemann Ellipsoids, Astrophys. J., 460, 762

[12] S. Filippi , R. Ruffini and A. Sepulveda , 2002: Functional approach to the problem of self-gravitating systems: Conditions of integrability, Phys. Rev. D, 65, 044019.

[13] Y. Eriguchi and D. Sugimoto 1981: Another Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluid, Prog. Theor. Phys., 65, 18701875.

[14] D. Sugimoto , K. Nomoto and Y. Eriguchi 1981: Stable Numerical Method in Computing of Stellar Evolution, Prog. Theor. Phys. Supp., 70, 115131.

[15] Y. Eriguchi and I. Hachisu , 1982: New Equilibrium Sequences Bifurcating from Maclaurin Sequence, Prog. Theor. Phys., 67, 844851.

[16] Y. Eriguchi , I. Hachisu and D. Sugimoto , 1982: Dumb-Bell Shape Equilibrium and Mass Shedding Pear-Shape of Self-Gravitating Incompressible Fluid, Prog. Theor. Phys., 67, 10681075.

[17] I. Hachisu , Y. Eriguchi , and D. Sugimoto 1982: Rapidly Rotating Polytropes and Concave Hamburger Equilibrium, Prog. Theor. Phys., 68, 191205.

[18] I. Hachisu and Y. Eriguchi , 1982: Bifurcation and Fission of Three Dimensional, Rigidly Rotating and Self-Gravitating Polytropes, Prog. Theor. Phys., 68, 206221.

[19] Y. Eriguchi and I. Hachisu , 1983: Two Kinds of Axially Symmetric Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluid, Prog. Theor. Phys., 69, 11311136.

[20] I. Hachisu and Y. Eriguchi , 1983: Bifurcation and Phase Transitions of Self-Gravitating and Uniformly Rotating Fluid, Mon. Not. R. Astron. Soc., 204, 583589.

[22] R. Stoeckly , 1965: Polytropic Models with Fast, Non-Uniform Rotation, Astrophys. J., 142, 208228.

[23] K. Fujisawa , 2015: A versatile numerical method for obtaining structures of rapidly rotating baroclinic stars: self-consistent and systematic solutions with shellular-type rotation, Mon. Not. R. Astron. Soc., 454, 30603072.

[24] F. Galeazzi , S. Yoshida and Y. Eriguchi , 2012: Differentially-rotating neutron star models with a parametrized rotation profile, Astron. Astrophys., 541, A156.

[30] S. Chandrasekhar , 1933: The equilibrium of distorted polytropes. I. The rotational problem, Mon. Not. R. Astron. Soc., 93, 390406.

[32] J. P. Ostriker and P. Bodenheimer , 1968: Rapidly Rotating Stars. II. Massive White Dwarfs, Astrophys. J., 151, 10891098.

[33] K. Uryū , F. Limousin , J.L. Friedman , E. Gourgoulhon and M. Shibata , 2009: Nonconformally flat initial data for binary compact objects, Phys. Rev. D, 80, 124004.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 28 *
Loading metrics...

* Views captured on Cambridge Core between 6th July 2017 - 25th July 2017. This data will be updated every 24 hours.