Skip to main content

Equilibrium Configurations of Classical Polytropic Stars with a Multi-Parametric Differential Rotation Law: A Numerical Analysis

  • Federico Cipolletta (a1) (a2), Christian Cherubini (a3) (a4), Simonetta Filippi (a3) (a4), Jorge A. Rueda (a1) (a2) (a5) and Remo Ruffini (a1) (a2) (a5)...

In this paper we analyze in detail the equilibrium configurations of classical polytropic stars with a multi-parametric differential rotation law of the literature using the standard numerical method introduced by Eriguchi and Mueller. Specifically we numerically investigate the parameters’ space associated with the velocity field characterizing both equilibrium and non-equilibrium configurations for which the stability condition is violated or the mass-shedding criterion is verified.

Corresponding author
*Corresponding author. Email addresses: (F. Cipolletta), (C. Cherubini), (F. Filippi), (J. A. Rueda), (R. Ruffini)
Hide All
[1] Chandrasekhar, S., 1967: An Introduction to the Study of Stellar Structure, Dover.
[2] Chandrasekhar, S., 1987: Ellipsoidal Figures of Equilibrium, Dover.
[3] James, R. A., 1964: The Structure and Stability of Rotating Gas Masses, Astrophys. J., 140, 552582.
[4] Busarello, G., Filippi, S. and Ruffini, R., 1988: Anisotropic tensor virial models for elliptical galaxies with rotation or vorticity, Astron. Astrophys., 197, 91104.
[5] Busarello, G., Filippi, S. and Ruffini, R., 1989: Anisotropic and inhomogeneous tensor virial models for elliptical galaxies with figure rotation and internal streaming, Astron. Astrophys., 213, 8088.
[6] Busarello, G., Filippi, S. and Ruffini, R., 1990: ‘b-type’ spheroids, Astron. Astrophys., 227, 3032.
[7] Filippi, S., Ruffini, R. and Sepulveda, A., 1990: Generalized Riemann configurations and Dedekind's theorem - The case of non-linear internal velocities, Astron. Astrophys., 231, 3040.
[8] Filippi, S.; Ruffini, R.; Sepulveda, A. 1990: On the generalization of Dedekind-Riemann sequences to nonlinear velocities., Europhys. Lett., 12, 735740.
[9] Filippi, S.; Ruffini, R.; Sepulveda, A., 1990: Nonlinear velocities in generalized Riemann ellipsoids., Nuovo Cim. B, 105, 10471054.
[10] Filippi, S., Ruffini, R. and Sepulveda, A., 1991: Generalized Riemann ellipsoids - Equilibrium and stability, Astron. Astrophys., 246, 5970.
[11] Filippi, S., Ruffini, R. and Sepulveda, A., 1996: On the Implications of the nth-Order Virial Equations for Heterogeneous and Concentric Jacobi, Dedekind, and Riemann Ellipsoids, Astrophys. J., 460, 762
[12] Filippi, S., Ruffini, R. and Sepulveda, A., 2002: Functional approach to the problem of self-gravitating systems: Conditions of integrability, Phys. Rev. D, 65, 044019.
[13] Eriguchi, Y. and Sugimoto, D. 1981: Another Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluid, Prog. Theor. Phys., 65, 18701875.
[14] Sugimoto, D., Nomoto, K. and Eriguchi, Y. 1981: Stable Numerical Method in Computing of Stellar Evolution, Prog. Theor. Phys. Supp., 70, 115131.
[15] Eriguchi, Y. and Hachisu, I., 1982: New Equilibrium Sequences Bifurcating from Maclaurin Sequence, Prog. Theor. Phys., 67, 844851.
[16] Eriguchi, Y., Hachisu, I. and Sugimoto, D., 1982: Dumb-Bell Shape Equilibrium and Mass Shedding Pear-Shape of Self-Gravitating Incompressible Fluid, Prog. Theor. Phys., 67, 10681075.
[17] Hachisu, I., Eriguchi, Y., and Sugimoto, D. 1982: Rapidly Rotating Polytropes and Concave Hamburger Equilibrium, Prog. Theor. Phys., 68, 191205.
[18] Hachisu, I. and Eriguchi, Y., 1982: Bifurcation and Fission of Three Dimensional, Rigidly Rotating and Self-Gravitating Polytropes, Prog. Theor. Phys., 68, 206221.
[19] Eriguchi, Y. and Hachisu, I., 1983: Two Kinds of Axially Symmetric Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluid, Prog. Theor. Phys., 69, 11311136.
[20] Hachisu, I. and Eriguchi, Y., 1983: Bifurcation and Phase Transitions of Self-Gravitating and Uniformly Rotating Fluid, Mon. Not. R. Astron. Soc., 204, 583589.
[21] Eriguchi, Y. and & Mueller, E.: 1985, A general computationalmethod for obtaining equilibria of self-gravitating and rotating gases, Astron. Astrophys., 146, 260268.
[22] Stoeckly, R., 1965: Polytropic Models with Fast, Non-Uniform Rotation, Astrophys. J., 142, 208228.
[23] Fujisawa, K., 2015: A versatile numerical method for obtaining structures of rapidly rotating baroclinic stars: self-consistent and systematic solutions with shellular-type rotation, Mon. Not. R. Astron. Soc., 454, 30603072.
[24] Galeazzi, F., Yoshida, S. and Eriguchi, Y., 2012: Differentially-rotating neutron star models with a parametrized rotation profile, Astron. Astrophys., 541, A156.
[25] Cherubini, C., Filippi, S., Ruffini, R., Sepulveda, A. and Zuluaga, J. I., 2008: Non-Homogeneous Axisymmetric Models of Self-Gravitating Systems. The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, 2340-2342.
[26] Tassoul, J.-L., 1978: Theory of rotating stars. Princeton Series in Astrophysics, Princeton University Press.
[27] Horedt, G. P., 2004: Polytropes - Applications in Astrophysics and Related Fields. Kluwer Academic Publishers.
[28] Maeder, A., 2009: Physics, Formation and Evolution of Rotating Stars. Astronomy and Astrophysics, Springer, Berlin.
[29] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992: Numerical recipes in C. The art of scientific computing. Cambridge University Press, 2nd ed.
[30] Chandrasekhar, S., 1933: The equilibrium of distorted polytropes. I. The rotational problem, Mon. Not. R. Astron. Soc., 93, 390406.
[31] Chandrasekhar, S., 1961: Hydrodynamic and hydromagnetic stability. Dover Publications.
[32] Ostriker, J. P. and Bodenheimer, P., 1968: Rapidly Rotating Stars. II. Massive White Dwarfs, Astrophys. J., 151, 10891098.
[33] Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., 2009: Nonconformally flat initial data for binary compact objects, Phys. Rev. D, 80, 124004.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 118 *
Loading metrics...

* Views captured on Cambridge Core between 6th July 2017 - 20th March 2018. This data will be updated every 24 hours.