[1]Silvester, P., Finite element solution of homogeneous waveguide problems, Alta Frequenza., 38 (1969),313–317.
[2]Cendes, Z.J., Hudak, D., Lee, J.F., and Sun, D.K, Development of New Methods for Predicting the Bistatic Electromagnetic Scattering from Absorbing Shapes, RADC Final Report, Hansom Air Force Base, MA, 1986.
[3]Rahman, B.M.A., Davies, J.B., Penalty Function Improvement of Waveguide Solution by Finite Elements, IEEE Trans. Microw. Theory Tech., 32 (1984), 922–928.
[4]Winkler, J.R. and Davies, J.B., Elimination of spurious modes in finite element analysis, J. Comput. Phys., 56 (1984), 1–14.
[5]Kobelansky, A.J. and Webb, J.P., Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields, Electron. Lett., 22 (1986), 569–570.
[6]Sun, D., Manges, J., Yuan, X., Z. Cendes Spurious Modes in Finite Element Methods, IEEE Trans. Microw. Theory Tech., 37 (1995), 12–24.
[7]Nédélec, J.C., Mixed finite elements in R3, Numer. Mathem., 35 (1980), 315–341.
[8]Nédélec, J.C., A New Family of Mixed Finite Elements in R3, Numer. Mathem., 50 (1986),57–81.
[9]Mur, G., Edge Elements, their advantages and their disadvantages, IEEE Trans. Magn., 30 (1994), 3552–3557.
[10]Boffi, D., Finite element approximation of eigenvalue problems, Acta Numerica., 19 (2010), 1–120.
[11]Boffi, D., Conforti, M., and Gastaldi, L., Modified edge finite elements for photonic crystals. Numer. Mathem., 105 (2006), 249–266.
[12]D., Boffi, Brezzi, F., Gastaldi, L., On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa Cl. Sci., 25 (1997), 131C154.
[13]Hiptmair, R. and Ledger, P.D., Computation of resonant modes for axisymmetric Maxwell cavities using hp-version edge finite elements. Int. J. Numer. Meth. Engng, 62 (2005), 1652–1676.
[14]Kikuchi, F., Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, Comput. Methods Appl. Mech. Engrg., 64 (1987), 509–521.
[15]Brenner, S.C., Li, F., Sung, L., Nonconforming Maxwell Eigensolvers, J. Sci. Comput., 40 (2009), 51–85.
[16]Monk, P., Finite element methods for Maxwell’s equations, Oxford University Press, 2003.
[17]Adam, S., Arbenz, P., Geus, R., Arbenz, P., Eigenvalue solvers for electromagnetic fields in cavities, Technical Report 275, Institute of Scientific Computing, ETH zürich, 1997.
[18]Lee, J.H., Xiao, T., and Liu, Q.H., A 3-D Spectral-Element Method Using Mixed-Order Curl Conforming Vector Basis Functions for Electromagnetic Fields, IEEE Trans. Microw. Theory Tech., 54 (2006), 437–444.
[19]Luo, M., Liu, Q.H., and Li, Z., Spectral element method for band structures of two-dimensional anisotropic photonic crystals, Phys. Rev. E 79, 026705 (2009), 1–8.
[20]Liu, N., Tang, Y., Zhu, X., Tobón, L. and Liu, Q.H., Higher-order Mixed Spectral Element Method for Maxwell Eigenvalue Problem, IEEE International Symposium on Antennas and Propagation (APS 2013).
[21]Monk, P., on the p and hp extension of Nedéléc’s curl-conforming elements. J. Comp. Appl. Math., 53 (1994),117–137.
[22]Suri, M., on the stability and convergence of higher-order mixed finite element methods for second-order elliptic problems, Math. Comp., 54 (1990), 1–19.
[23]Hiptmair, R., Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), 237–339.
[24]Bespalov, A.N., Finite element method for the eigenmode problem of a RF cavity resonator, Sov. J. Numer. Anal. Appl. Math. Model., 3 (1988), 163–178.
[25]Brenner, S.C., Li, F. and Sung, L., A Locally Divergence-free Interior Penalty Method for Two-dimensional Curl-curl Problems, SIAM J. Numer. Anal., 46 (2008), 1190–1211.
[27]Tanner, Z.P., Savage, S., Tanner, D.R., and Peterson, A.F., Two-dimensional singular vector elements for finite-element analysis, IEEE Trans. Microw. Theory Tech., 46 (1998), 178–184.
[28]Graglia, R.D., and Lombardi, G., Singular higher order complete vector bases for finite methods, IEEE Trans. Antennas Propagat., 52 (2004), 1672–1685.
[29]Peverini, O.A., Addamo, G., Virone, G., Tascone, R., and Orta, R., A Spectral-Element Method for the Analysis of 2-D Waveguide Devices With Sharp Edges and Irregular Shapes, IEEE Trans. Microw. Theory Tech., 59 (2011), 1685–1695.