Skip to main content
×
×
Home

Monotone Finite Volume Scheme for Three Dimensional Diffusion Equation on Tetrahedral Meshes

  • Xiang Lai (a1), Zhiqiang Sheng (a2) and Guangwei Yuan (a2)
Abstract
Abstract

We construct a nonlinear monotone finite volume scheme for three-dimensional diffusion equation on tetrahedral meshes. Since it is crucial important to eliminate the vertex unknowns in the construction of the scheme, we present a new efficient eliminating method. The scheme has only cell-centered unknowns and can deal with discontinuous or tensor diffusion coefficient problems on distorted meshes rigorously. The numerical results illustrate that the resulting scheme can preserve positivity on distorted tetrahedral meshes, and also show that our scheme appears to be approximate second-order accuracy for solution.

Copyright
Corresponding author
*Corresponding author. Email addresses: qxlai2000@sdu.edu.cn (X. Lai), sheng_zhiqiang@iapcm.ac.cn (Z. Sheng), yuan_guangwei@iapcm.ac.cn (G. Yuan)
References
Hide All
[1] Lipnikov K., Shashkov M., Svyatskiy D., Vassilevski Yu., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys. 227, 492512 (2007).
[2] Aavatsmark I., An introduction to multipoint flux approxmations for quadrilateral grids, Comput. Geosci. 6, 405432 (2002).
[3] Aavatsmark I., Barkve T., Boe O., Mannseth T., Discretization on unstructured grids for inhomogeneous, anisotropic media Part I: Derivation of the methods. SIAM J. Sci. Comput. 19, 17001716 (1998).
[4] Sheng Zhiqiang and Yuan Guangwei, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput. 30, 13411361 (2008).
[5] Chang L., Yuan G., Cell-centered finite volume methods with flexible stencils for diffusion equations on general nonconforming meshes, Comput. Methods Appl. Mech. Engrg. 198, 16381646 (2009).
[6] Wu Jingming, Dai Zihuan, Gao Zhiming, Yuan Guangwei, Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys. 229, 33823401 (2010).
[7] Korotov S., Krizek M., Neittaanmi P., Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math.Comput. 70, 107119 (2000).
[8] Mishev I.D., Finite volume methods on Voronoi meshes, Numer. Methods PDEs. 12, 193212 (1998).
[9] Keilegarlen Eirik, Nordbotten Jan M., Ivar Aavatsmark, Sufficient criteria are necessary for monotone control volume methods, Appl. Math. Lett. 22, 11781180 (2009).
[10] Nordbotten J. M., Aavatsmark I., Eigestad G. T., Monotonicity of control volume methods, Numer. Math. 106, 255288 (2007).
[11] Keilegarlen E., Aavatsmark I., Monotonicity for MPFA methods on triangular grids, Comput. Geosci. 15, 316 (2011).
[12] Edwards Michael G., Zheng Hongwen, Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids, J. Comput. Phys. 229, 594625 (2010).
[13] Edwards Michael G. and Zheng Hongwen, A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support. J. Comput. Phys. 227, 93339364 (2008).
[14] Lipnikov K., Manzini G., and Svyatskiy D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys. 230, 26202642 (2011).
[15] Lipnikov K., Manzini G., and Svyatskiy D., Monotonocity conditions in the mimetic finite difference method. Fořt J. et al., Finite volumes for complex applications VI-problems & perspectives, Springer proceedings in mathematics 4, DOI 10.1007/978-3-642-20671-9_69, © Springer-Verlag Berlin Heidelberg 2011.
[16] Sharma P. and Hammett G.W., Preserving monotonicity in anisotropic diffusion, J. Comput. Phys. 227, 123142 (2007).
[17] Liska R. and Shashkov M., Enforcing the discrete maximum principle for linear finite element solutions of second-Order elliptic problems, Commun. Comput. Phys. 3, 852877 (2008).
[18] Le Potier C., Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, C. R. Acad. Sci. Paris Ser.I. 341, 787792 (2005).
[19] Yuan Guangwei, Sheng Zhiqiang, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys. 227, 62886312 (2008).
[20] Sheng Zhiqiang, Yuan Guangwei, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, J. Comput. Phys. 230, 25882604 (2011).
[21] Lipnikov K., Svyatskiy D., Vassilevski Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys. 228, 703716 (2009)
[22] Lipnikov K., Svyatskiy D., Vassilevski Y., A monotone finite volume method for advection–diffusion equations on unstructured polygonal meshes, J. Comput. Phys. 229, 40174032 (2010).
[23] Palmer T. S., A point-centered diffusion differencing for unstructured meshes in 3-D, UCRL-JC-118730, 1994.
[24] Chen Guangnan, Li Deyuan, Wan Zhengsu, Difference scheme by integral interpolation method for three dimensional diffusion equation. Chinese Journal of Computational Physics, 20, 205209 (2003).
[25] Du Zhengping, Yin Dongsheng, Liu Xiaoyu, Lu Jinfu, Nonorthogonal hexahedralmesh finite volume difference method for the 3-D diffusion equation. J Tsinghua Univ (Sci & Tech), 43, 13651368 (2003).
[26] Yin Dongsheng, Du Zhengping, Lu Jinfu, An unstructured tetrahedral mesh finite volume difference method for the diffusion equation. J. Numer. Methods Comput. Appl. 2, 92100 (2005).
[27] Lipnikov K., Shashkov M., Svyatskiy D., The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes, J. Comput. Phys. 211, 473491 (2006).
[28] Lai Xiang, Sheng Zhiqiang and Yuan Guangwei, A Finite Volume Scheme for Three-Dimensional Diffusion Equations, Communications in Computational Physics, 18, 650672 (2015).
[29] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical science, Academic Press, New York, 1979.
[30] Edwards Michael G., Zheng Hongwen, Quasi M-Matrix multifamily continuous Darcy-flux approximations with full pressure support on structured and unstructured grids in three dimension, SIAM J. Sci. Comput. 33, 455487 (2011).
[31] Pal M., Edwards M., Continuous Darcy-flux approximation for general 3-D grids of any element type, paper SPE 106486. In: SPE Reservior simulation symposium. Houston, Texas, USA, 26-28 February 2007.
[32] Kapyrin I. V., A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Mathematics. 416, 588593 (2007).
[33] Danilov A., Vassilevski Yu.. A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes, Russ. J. Numer. Anal. Math. Modeling, 24, 207227 (2009).
[34] Nikitin K., Vassilevski Yu., A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D, Russ. J. Numer. Anal. Math. Modelling, 25, 335358 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 208 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 19th January 2018. This data will be updated every 24 hours.