Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T20:43:15.308Z Has data issue: false hasContentIssue false

Non-Newtonian Effect on Hemodynamic Characteristics of Blood Flow in Stented Cerebral Aneurysm

Published online by Cambridge University Press:  03 June 2015

Changsheng Huang*
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Zhenhua Chai*
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Get access

Abstract

Stent placement is considered as a promising and minimally invasive technique to prevent rupture of aneurysm and favor coagulation mechanism inside the aneurysm. Many scholars study the effect of the stent on blood flow in cerebral aneurysm by numerical simulations, and usually regard blood as the Newtonian fluid, blood, however, is a kind of non-Newtonian fluid in practice. The main purpose of the present paper is to investigate the effect of non-Newtonian behavior on the hemodynamic characteristics of blood flow in stented cerebral aneurysm with lattice Boltzmann method. The Casson model is used to describe the blood non-Newtonian character, which is one of the most popular models in depicting blood fluid. In particular, hemodynamic characteristics derived with Newtonian and non-Newtonian models are studied, and compared in detail. The results show that the non-Newtonian effect gives a great influence on hemodynamic characteristics of blood flow in stented cerebral aneurysm, especially in small necked ones.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Foutrakis, G. N., Yonas, H. and Sclabassi, R. J., Saccular aneurysm formation in curved and bifurcating arteries, AJNR Am. J. Neuroradiol., 20 (1999), 13091317.Google Scholar
[2]Lieber, B. B., Livescu, V., Hopkins, L. N. and Wakhloo, A. K., Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow, Ann. Biomed. Eng., 30 (2002), 768777.Google Scholar
[3]Liou, T. M., Liou, S. N. and Chu, K. L., Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel, J. Biomech. Eng., 126 (2004), 3643.Google Scholar
[4]Barath, K., Cassot, F., Fasel, J. H. D., Ohta, M. and Rufenacht, D. A., Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models, Neurol. Res., 27 (2005), 120128.Google Scholar
[5]Aenis, M., Stancampiano, A. P., Wakhloo, A. K. and Lieber, B. B., Modeling of flow in a straight stented and nonstented side wall aneurysm model, J. Biomech. Eng., 119 (1997), 206212.Google Scholar
[6]Hirabayashi, M., Ohta, M., Rüfenacht, D. A. and Chopard, B., A lattice Boltzmann study of blood flow in stented aneurism, Future Gener. Comp. Sy., 20 (2004), 925934.Google Scholar
[7]Appanaboyina, S., Mut, F., Löhner, R., Putman, C. and Cebral, J. R., Simulation of intracranial aneurysm stenting: techniques and challenges, Comput. Methods Appl. Mech. Eng., 198 (2009), 35673582.Google Scholar
[8]Berger, S. A. and Jou, L. D., Flows in stenotic vessels, Annu. Rev. Fluid Mech., 32 (2000), 347382.Google Scholar
[9]Bernsdorf, J. and Wang, D., Non-Newtonian blood flow simulation in cerebral aneurysms, Comput. Math. Appl., 58 (2009), 10241029.Google Scholar
[10]Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D. and Frangi, A. F., Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemody-namics: technique and sensitivity, IEEE Trans. Med. Imaging, 24 (2005), 457467.Google Scholar
[11]Fisher, C. and Rossmann, J. S., Effect of non-Newtonian behavior on hemodynamics of cerebral aneurysms, J. Biomech. Eng., 131 (2009), 91004.Google Scholar
[12]Kim, Y. H., Xu, X. and Lee, J. S., The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method, Ann. Biomed. Eng., 38 (2010), 22742292.Google Scholar
[13]Löw, M., Perktold, K. and Raunig, R., Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics, Biorheology, 30 (1993), 287298.Google Scholar
[14]Chai, Z., Shi, B., Guo, Z. and Rong, F., Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech., 166 (2011), 332342.Google Scholar
[15]Ji, Y., Kang, X. and Liu, D., Simulation of non-Newtonian blood flow by lattice Boltzman method, Chinese Phys. Lett., 27 (2010), 9470194704.Google Scholar
[16]Ouared, R. and Chopard, B., Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes, J. Stat. Phys., 121 (2005), 209221.Google Scholar
[17]Neofytou, P., A 3rd order upwind finite volume method for generalised Newtonian fluid flows, Adv. Eng. Softw., 36 (2005), 664680.Google Scholar
[18]Papanastasiou, T. C., Flows of materials with yield, J. Rheol., 31 (1987), 385404.Google Scholar
[19]Pham, T. V. and Mitsoulis, E., Entry and exit flows of Casson fluids, Can. J. Chem. Eng., 72 (1994), 10801084.Google Scholar
[20]Chen, S. and Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), 329364.Google Scholar
[21]Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press, USA, 2001.Google Scholar
[22]Melchionna, S., Bernaschi, M., Succ, S., Kaxiras, E., Rybicki, F.J., Mitsouras, D., Coskun, A.U. and Feldman, C.L., Hydrokinetic approach to large-scale cardiovascular blood flow, Comput. Phys. Comm., 181 (2010) 462472.CrossRefGoogle Scholar
[23]Melchionna, S., A model for red blood cells in simulations of large-scale blood flows, Macromol. Theory and Sim., 20 (2011) 548561.Google Scholar
[24]Qian, Y. H., D’Humieres, D. and Lallemand, P., Lattice BGK model for Navier-Stokes equation, Europhys. Lett., 17 (1992), 479484.Google Scholar
[25]Boyd, J., Buick, J. and Green, S., A second-order accurate lattice Boltzmann non-Newtonian flow model, J. Phys. A: Math. Gen., 39 (2006), 1424114247.Google Scholar
[26]Tang, G. H., Li, X. F., He, Y. L. and Tao, W. Q., Electroosmotic flow of non-newtonian fluid in microchannels, J. Non-Newton. Fluid Mech., 157 (2009), 133137.Google Scholar
[27]Hirabayashi, M., Ohta, M., Rufenacht, D. A. and Chopard, B., Characterization of flow reduc-tion properties in an aneurysm due to a stent, Phys. Rev. E, 68 (2003), 21918.Google Scholar
[28]Guo, Z., Zheng, C. and Shi, B., Non-equilibrium extrapolation method for velocity and pres-sure boundary conditions in the lattice Boltzmann method, Chinese Phys., 11 (2002), 366374.Google Scholar
[29]He, X., Zou, Q., Luo, L.S. and Dembo, M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87 (1997), 115136.Google Scholar
[30]Ashrafizaadeh, M. and Bakhshaei, H., A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations, Comput. Math. Appl., 58 (2009), 10451054.Google Scholar
[31]Yu, S. C. M. and Zhao, J. B., A steady flow analysis on the stented and non-stented sidewall aneurysm models, Med. Eng. Phys., 21 (1999), 133141.Google Scholar
[32]Xiang, J., Tremmel, M., Kolega, J., Levy, E.I., Natarajan, S.K. and Meng, H., Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk, J. Neurolnterv. Surg. (2011). doi:10.1136/neurintsurg-2011-010089.Google Scholar