This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
M. Ainsworth , Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42 (2004), pp. 553–575.

[3]
I. Babuška , F. Ihlenburg , E. Paik , and S. Sauter , A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 325–359.

[5]
S. Brenner and L. Scott , The mathematical theory of finite element methods, Springer, New York, third ed., 2008.

[6]
H. Chen , P. Lu , and X. Xu , A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number, SIAM J. Numer. Anal., 51 (2013), pp. 2166–2188.

[7]
P. G. Ciarlet , The finite element method for elliptic problems, North-Holland Pub. Co., New York, 1978.

[9]
A. Deraemaeker , I. Babuška , and P. Bouillard , Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Internat. J. Numer. Methods Engrg., 46 (1999), pp. 471–499.

[10]
J. Douglas Jr, J. Santos , and D. Sheen , Approximation of scalar waves in the space-frequency domain, Math. Models Methods Appl. Sci., 4 (1994), pp. 509–531.

[11]
Y. Du and H. Wu , Preasymptotic error analysis of higher order fem and cip-fem for Helmholtz equation with high wave number, SIAM J. Numer. Anal., 53 (2015), pp. 782–804.

[12]
Y. Du and L. Zhu , Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number, J. Sci. Comput., 67 (2016), pp. 130–152.

[14]
X. Feng and H. Wu , Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers, SIAM J. Numer. Anal., 47 (2009), pp. 2872–2896.

[15]
X. Feng and H. Wu , hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp., 80 (2011), pp. 1997–2024.

[17]
F. Ihlenburg , Finite element analysis of acoustic scattering, vol. 132 of Applied Mathematical Sciences, Springer-Verlag, New York, 1998.

[18]
F. Ihlenburg and I. Babuška , Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9–37.

[19]
F. Ihlenburg and I. Babuška , Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315–358.

[20]
J. Melenk , A. Parsania , and S. Sauter , General DG-methods for highly indefinite Helmholtz problems, Journal of Scientific Computing, 57 (2013), pp. 536–581.

[22]
J. M. Melenk and S. Sauter , Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210–1243.

[23]
P. Monk , Finite element methods for Maxwell's equations, Oxford University Press, New York, 2003.

[25]
L. Mu , J. Wang , X. Ye , and S. Zhao , A numerical study on the weak Galerkin method for the helmholtz equation, Communications in Computational Physics, 15 (2014), pp. 1461–1479.

[26]
A. Schatz , An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959–962.

[27]
J. Shen and L. Wang , Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal., 45 (2007), pp. 1954–1978.

[28]
L. Thompson , A review of finite-element methods for time-harmonic acoustics, J. Acoust. Soc. Am., 119 (2006), pp. 1315–1330.

[33]
L. Zhu and Y. Du , Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number, Comput. Math. Appl., 70 (2015), pp. 917–933.

[34]
L. Zhu and H. Wu , Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal., 51 (2013), pp. 1828–1852.

[35]
J. Zitelli , I. Muga , L. Demkowicz , J. Gopalakrishnan , D. Pardo , and V. Calo , A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys., 230 (2011), pp. 2406–2432.

[36]
R. Zhang and Q. Zhai , A weak Galerkin finite element scheme for the biharmonic equa- tions by using polynomials of reduced order, J. Sci. Comput., 64(2015), pp. 559–585.

[37]
Q. Zhai , R. Zhang and L. Mu , A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19(2016), pp. 1409–1434.

[38]
L. Mu , J. Wang , X. Ye and S. Zhang , A weak Galerkin finite element method for the Maxwell equations, (English summary) J. Sci. Comput., 65(2015), pp. 363–386.