[1]
Ainsworth M., Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42 (2004), pp. 553–575.

[2]
Aziz A. and Kellogg R., A scattering problem for the Helmholtz equation, in Advances in Computer Methods for Partial Differential Equations-III, vol. 1, 1979, pp. 93–95.

[3]
Babuška I., Ihlenburg F., Paik E., and Sauter S., A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 325–359.

[4]
Babuška I. and Sauter S., Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev., 42 (2000), pp. 451–484.

[5]
Brenner S. and Scott L., The mathematical theory of finite element methods, Springer, New York, third ed., 2008.

[6]
Chen H., Lu P., and Xu X., A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number, SIAM J. Numer. Anal., 51 (2013), pp. 2166–2188.

[7]
Ciarlet P. G., The finite element method for elliptic problems, North-Holland Pub. Co., New York, 1978.

[8]
Demkowicz L., Gopalakrishnan J., Muga I., and Zitelli J., Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 214 (2012), pp. 126–138.

[9]
Deraemaeker A., Babuška I., and Bouillard P., Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Internat. J. Numer. Methods Engrg., 46 (1999), pp. 471–499.

[10]
Douglas J. Jr, Santos J., and Sheen D., Approximation of scalar waves in the space-frequency domain, Math. Models Methods Appl. Sci., 4 (1994), pp. 509–531.

[11]
Du Y. and Wu H., Preasymptotic error analysis of higher order fem and cip-fem for Helmholtz equation with high wave number, SIAM J. Numer. Anal., 53 (2015), pp. 782–804.

[12]
Du Y. and Zhu L., Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number, J. Sci. Comput., 67 (2016), pp. 130–152.

[13]
Engquist B. and Majda A., Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), pp. 313–357.

[14]
Feng X. and Wu H., Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers, SIAM J. Numer. Anal., 47 (2009), pp. 2872–2896.

[15]
Feng X. and Wu H., hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp., 80 (2011), pp. 1997–2024.

[16]
Harari I., Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics, Comput. Meth. Appl. Mech. Engrg., 140 (1997), pp. 39–58.

[17]
Ihlenburg F., Finite element analysis of acoustic scattering, vol. 132 of Applied Mathematical Sciences, Springer-Verlag, New York, 1998.

[18]
Ihlenburg F. and Babuška I., Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9–37.

[19]
Ihlenburg F. and Babuška I., Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315–358.

[20]
Melenk J., Parsania A., and Sauter S., General DG-methods for highly indefinite Helmholtz problems, Journal of Scientific Computing, 57 (2013), pp. 536–581.

[21]
Melenk J. M. and Sauter S., Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp. 1871–1914.

[22]
Melenk J. M. and Sauter S., Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210–1243.

[23]
Monk P., Finite element methods for Maxwell's equations, Oxford University Press, New York, 2003.

[24]
Mu L., Wang J., and Ye X., A new weak Galerkin finite element method for the Helmholtz equation, IMA Journal of Numerical Analysis, 35 (2014), pp. 1228–1255.

[25]
Mu L., Wang J., Ye X., and Zhao S., A numerical study on the weak Galerkin method for the helmholtz equation, Communications in Computational Physics, 15 (2014), pp. 1461–1479.

[26]
Schatz A., An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959–962.

[27]
Shen J. and Wang L., Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal., 45 (2007), pp. 1954–1978.

[28]
Thompson L., A review of finite-element methods for time-harmonic acoustics, J. Acoust. Soc. Am., 119 (2006), pp. 1315–1330.

[29]
Thompson L. and Pinsky P., Complex wavenumber Fourier analysis of the p-version finite element method, Comput. Mech., 13 (1994), pp. 255–275.

[30]
Wang J. and Wang C., Weak Galerkin finite element methods for elliptic pdes (in chinese), Sci. Sin. Math, 45 (2015), pp. 1061–1092.

[31]
Wang J. and Ye X., A weak Galerkin finite element method for second-order elliptic problems, J. Comp. Appl. Math., 214 (2013), pp. 103–115.

[32]
Wu H., Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part I: Linear version, IMA J. Numer. Anal., 34 (2014), pp. 1266–1288.

[33]
Zhu L. and Du Y., Pre-asymptotic error analysis of hp-interior penalty discontinuous Galerkin methods for the Helmholtz equation with large wave number, Comput. Math. Appl., 70 (2015), pp. 917–933.

[34]
Zhu L. and Wu H., Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, SIAM J. Numer. Anal., 51 (2013), pp. 1828–1852.

[35]
Zitelli J., Muga I., Demkowicz L., Gopalakrishnan J., Pardo D., and Calo V., A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys., 230 (2011), pp. 2406–2432.

[36]
Zhang R. and Zhai Q., A weak Galerkin finite element scheme for the biharmonic equa- tions by using polynomials of reduced order, J. Sci. Comput., 64(2015), pp. 559–585.

[37]
Zhai Q., Zhang R. and Mu L., A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19(2016), pp. 1409–1434.

[38]
Mu L., Wang J., Ye X. and Zhang S., A weak Galerkin finite element method for the Maxwell equations, (English summary) J. Sci. Comput., 65(2015), pp. 363–386.