Skip to main content

Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

  • Henk A. Dijkstra (a1), Fred W. Wubs (a2), Andrew K. Cliffe (a3), Eusebius Doedel (a4), Ioana F. Dragomirescu (a5), Bruno Eckhardt (a6), Alexander Yu. Gelfgat (a7), Andrew L. Hazel (a8), Valerio Lucarini (a9) (a10), Andy G. Salinger (a11), Erik T. Phipps (a11), Juan Sanchez-Umbria (a12), Henk Schuttelaars (a13), Laurette S. Tuckerman (a14) and Uwe Thiele (a15)...

We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as ‘tipping points’, is important for understanding the transition mechanisms. We describe the two basic classes of methods of numerical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system. The numerical challenges involved in both methods arementioned and possible solutions to current bottlenecks are given. To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems, we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.

Corresponding author
* Corresponding author. Email:
Hide All
[1] Assemat, P., Bergeon, A., and Knobloch, E., 2008: Spatially localized states in Marangoni convection in binary mixtures. Fluid Dyn. Res., 40, 852–876.
[2] Barkley, D. and Henderson, R. D., 1996: Floquet stability analysis of the periodic wake of a circular cylinder. J. Fluid Mech., 322, 215–241.
[3] Batiste, O., Knobloch, E., Alonso, A., and Mercader, I., 2006: Spatially localized binary fluid convection. J. Fluid Mech., 560, 149–158.
[4] Beltrame, P., Haänggi, P., and Thiele, U., 2009: Depinning of three-dimensional drops from wettability defects. Europhys. Lett., 86, 24 006, doi:10.1209/0295-5075/86/24006.
[5] Beltrame, P. Knobloch, E., Haänggi, P., and Thiele, U., 2011: Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates. Phys. Rev. E, 83, 016 305, doi:10.1103/PhysRevE.83.016305.
[6] Beltrame, P. and Thiele, U., 2010: Time integration and steady-state continuation method for lubrication equations. SIAM J. Appl. Dyn. Syst., 9, 484–518, doi:10.1137/080718619.
[7] Bernsen, E., Dijkstra, H. A., Thies, J., and Wubs, F. W., 2010: The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models. Journal of Computational Physics, 229 (21), 8167–8179.
[8] Bernsen, E., Dijkstra, H. A., and Wubs, F. W., 2008: A method to reduce the spin-up time of ocean models. Ocean Modelling, 20 (4), 380–392.
[9] Bernsen, E., Dijkstra, H. A., and Wubs, F. W., 2009: Bifurcation analysis of wind-driven flows with MOM4. Ocean Modelling, 30 (2-3), 95–105.
[10] Bestehorn, M. and Neuffer, K., 2001: Surface patterns of laterally extended thin liquid films in three dimensions. Phys. Rev. Lett., 87, 046 101, doi:10.1103/PhysRevLett.87.046101.
[11] Bestehorn, M., Pototsky, A., and Thiele, U., 2003: 3D large scale Marangoni convection in liquid films. Eur. Phys. J. B, 33, 457–467.
[12] Bodenschatz, E., Pesch, W., and Ahlers, G., 2000: Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 32, 709–778.
[13] Bohr, T., Jensen, M. H., Paladin, G., and Vulpiani, A., 1998: Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge.
[14] Boronska, K. and Tuckerman, L., 2010: Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification. Phys. Rev., E81, 036321.
[15] Brown, P. N. and Saad, Y., 1990: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat.Comput., 11 (3), 450–481.
[16] Busse, F., 1981: Transition to turbulence in thermal convection. Topics in Applied Physics (eds. Swinney, H.L. and Gollub, J.P.), 45, 81–137.
[17] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 2006: Spectral Methods. Fundamentals in single domains. Springer.
[18] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., 2007: Spectral Methods. Evolution to complex geometries and applications to Fluid Dynamics. Springer.
[19] Carey, G. F., Wang, K., and Joubert, W., 1989: Performance of iterative methods for Newtonian and generalized Newtonian flows. Int. J.Num. Meth. Fluids, 9, 127–150.
[20] Cassak, P. A., Drake, J. F., Shay, M. A., and Eckhardt, B., 2007: Onset of fast magnetic reconnection. Physical Review Letters, 98, 215 001 (4 pages).
[21] Catton, I., 1972: The effect of insulating vertical walls on the onset of motion in a fluid heated from below. Int. J. Heat Mass Transfer, 15, 665–672.
[22] Chandrasekhar, S., 1981: Hydrodynamic and Hydromagnetic Stability. N.Y.
[23] Chang, H.C., 1994: Wave evolution on a falling film. Ann. Rev. Fluid Mech., 26, 103–136.
[24] Chang, H. C., Demekhin, E. A., and Kopelevich, D. I., 1993: Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech., 250, 433–480.
[25] Cherubini, S., De Palma, P., Robinet, J. C., and Bottaro, A., 2011: Edge states in a boundary layer. Physics Of Fluids, 23 (5), 051 705.
[26] Clever, R. M. and Busse, F. H., 1997: Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech., 344, 137–153.
[27] Coleman, T. F., Garbow, B. S., and Moreé, J. J., 1984: Software for Estimating Sparse Jacobian Matrices. ACM Transactions on Mathematical Software, 10 (3), 329–345.
[28] De Niet, A. C., Wubs, F. W., Terwisscha van Scheltinga, A. D., and Dijkstra, H. A., 2007: A tailored solver for bifurcation studies of ocean-climate models. J. Comp. Physics, 277, 654–679.
[29] Dhooge, A., Govaerts, W. J. F., and Kuznetsov, Y. A., 2003: MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Soft., 29, 141–164.
[30] Dijkstra, H. A., 2005: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Ninño, 2nd Revised and Enlarged edition. Springer, New York, 532 pp.
[31] Dijkstra, H. A. and Katsman, C. A., 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astro-phys. Fluid Dyn., 85, 195–232.
[32] Dijkstra, H. A. and Weijer, W., 2003: Stability of the global ocean circulation: The connection of equilibria in a hierarchy of models. J. Mar. Res., 61, 725–743.
[33] Doedel, E., 1986: AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Pasadena, USA, Report Applied Mathematics, California Institute of Technology.
[34] Doedel, E. J., 1980: AUTO: A program for the automatic bifurcation analysisof autonomous systems. Proc. 10th Manitoba Conf. on Numerical Math. and Comp., Vol. 30, 265–274.
[35] Doedel, E. J., Keller, H. B., and Kerneévez, J. P., 1991): Numerical analysis and control of bifurcation problems, Part I : Bifurcation in finite dimensions. Int. J. Bifurcation and Chaos, 1 (3), 493–520.
[36] Dragomirescu, F. I., Bistrian, D. A., Muntean, S., and Susan-Resiga, R., 2009: The stability of the swirling flows with applications to hydraulic turbines, Proceedings of the 3rd IAHR WG on Cavitation and Dynamic Problems in Hydraulic Mach. and Systems, Brno ‐ Czech Rep., Oct., 1416, 2009, 1524.
[37] Duguet, Y., Pringle, C. C. T., and Kerswell, R. R., 2008a: Relative periodic orbits in transitional pipe flow. Phys. Fluids, 20 (11), 114102.
[38] Duguet, Y., Schlatter, P., Henningson, D., and Eckhardt, B., 2012: Self‐sustained localized structures in a boundary layer‐flow. Phys. Rev. Lett., 108, 044501.
[39] Duguet, Y., Willis, A. P., and Kerswell, R. R., 2008b: Transition in pipe flow: the saddle structure on the boundary of turbulence. Journal Of Fluid Mechanics, 613, 255–274.
[40] Eckhardt, B., Faisst, H., Schmiegel, A., and Schneider, T. M., 2008: Dynamical systems and the transition to turbulence in linearly stable shear flows. Philosophical Transactions Of The Royal Society A‐Mathematical Physical And Engineering Sciences, 366 (1868), 1297– 1315.
[41] Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J., 2007: Turbulence transition in pipe flow. Annual Review Of Fluid Mechanics, Vol 43, 39, 447–468.
[42] Ehlers, J., 1988: The Morphodynamics of the Wadden Sea. Balkema, Rotterdam, 397 pp.
[43] Faisst, H. and Eckhardt, B., 2003: Traveling waves in pipe flow. Physical Review Letters, 91 (22), 224 502.
[44] Frank‐Kamenetskii, D. A., 1939: Calculation of thermal explosion limits. Acta. Phys.-Chim USSR, 10, 365.
[45] Gelfgat, A. Y., 1999: Different modes of Rayleigh-Bénard instability in two- and three dimensional rectangular enclosures. J. Comp. Physics, 156, 300–324.
[46] Gershuni, G. Z. and Zhukhovitskii, E., 1976: Convective Stability of Incompressible Fluids. Keter, Jerusalem.
[47] Gibson, J. F., Halcrow, J., and Cvitanovic, P., 2009: Equilibrium and traveling-wave solutions of plane Couette flow. J. Fluid Mech., 638, 243–266.
[48] Gladwell, M., 2000: The Tipping Point. Little Brown.
[49] Golub, G. H. and Van Loan, C. F., 1983: Matrix Computations. The Johns Hopkins University Press, Baltimore, U.S.A.
[50] Golubitsky, M., Stewart, I., and Schaeffer, D. G., 1988: Singularities and Groups in Bifurcation Theory, Vol. II. Springer-Verlag, New York, U.S.A.
[51] Grossmann, S., 2000: The onset of shear flow turbulence. Reviews Of Modern Physics, 72 (2), 603.
[52] Grün, G. and Rumpf, M., 2001: Simulation of singularities and instabilities arising in thin film flow. Euro. Jnl of Applied Mathematics, 12, 293–320.
[53] Guckenheimer, J. and Holmes, P., 1990: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edition. Springer-Verlag, Berlin/Heidelberg.
[54] Haines, P. E., Hewitt, R. E., and Hazel, A. L., 2011: The Jeffery-Hamel similarity solution and its relation to flow in a diverging channel. Journal of Fluid Mechanics, 687, 404–430.
[55] Heil, M. and Hazel, A., 2006: oomph-lib– An Object-Oriented Multi-Physics Finite-Element Library. Fluid-Structure Interaction, Lecture Notes on Computational Science and Engineering, Editors: Schafer, M. und Bungartz, H.-J.
[56] Hof, B., et al., 2004: Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science, 305 (5690), 1594–1598.
[57] Huepe, C., Tuckerman, L. S., Meétens, S., and Brachet, M. E., 2003: Stability and Decay Rates of Non-Isotropic Attractive Bose-Einstein Condensates. Phys. Rev.A, 68, 023609.
[58] Kalliadasis, S., Ruyer-Quil, C., Scheid, B., and Velarde, M. G., 2012: Falling Liquid Films, Applied Mathematical Sciences, Vol. 176. Springer Verlag.
[59] Keller, H. B., 1977: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, Rabinowitz, P. H., Ed., Academic Press, New York, U.S.A.
[60] Kerswell, R., Tutty, O., and Drazin, P., 2004: Steady nonlinear waves in diverging channel flow. Journal of Fluid Mechanics, 501, 231–250.
[61] Kevrekidis, I. G., Nicolaenko, B., and Scovel, J. C., 1990: Back in the saddle again - a computer-assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math., 50, 760–790.
[62] Koschmieder, E. L., 1993: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge, UK.
[63] Krauskopf, B. and Osinga, H., 2007: Computing invariant manifolds via the continuation of orbit segments. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, Krauskopf, O. H. B. and G.-V. J., Eds., Springer-Verlag, Understanding Complex Systems, 117–154.
[64] Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Dellnitz, M., and Junge, O., 2005: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifurcation and Chaos, 15, 763–791.
[65] Kundu, P. J. and Cohen, I. M., 2002: Fluid Mechanics. Academic Press, New York.
[66] Kuznetsov, Y. A. and Levitin, V. V., 1996: CONTENT, a multiplatform continuation environment. Tech. rep., CWI, Amsterdam, The Netherlands.
[67] Landau, L. D. and Lifshitz, I. M., 1987: Fluid Mechanics. Butterworth – Heinemann, New York.
[68] Lappa, M., 2005: On the nature and structure of possible three-dimensional steady flows in closed and open paralellepipedic and cubical containers under different heating conditions and driving forces. Fluid Mechanics and Material Processing, 1, 1–19.
[69] Lappa, M., 2007: Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh-Bénard systems. C.R.Mecanique, 335, 253–260.
[70] Lappa, M., 2010: Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons.
[71] Levitus, S., 1994: World Ocean Atlas 1994, Volume 4: Temperature. NOAA/NESDIS E, US Department of Commerce, Washington DC, OC21, 1–117.
[72] Lust, K., Roose, D., Spence, A., and Champneys, A., 1998: An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J.Sci. Comput., 19 (4), 1188–1209.
[73] Mamun, C. K. and Tuckerman, L. S., 1995: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids, 7, 80–91.
[74] Manneville, P., 2005: Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work. In: Damics of Spatio-Temporal Cellular Structures. Henri Bénard Centenary Review (eds. Mutabazi, I., Guyin, J.E., and Wesfreid, J.E.), Springer.
[75] Meerbergen, K. and Roose, D., 1996: Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems. IMA J. Numer. Anal., 16, 297–346.
[76] Meerbergen, K., Spence, A., and Roose, D., 1994: Shift-invert and Cayley transforms for the detection of rightmost eigenvalues of nonsymmetric matrices. BIT, 34, 409–423.
[77] Menter, F. R., Langtry, R., and Hansen, T., 2004: CFD simulation of turbomachinery flow-verification, validation and modelling”, European Congress on Computational Methods in Applied Sciences and Engineering, Jyvskyl, Vol. 1. 114 pp.
[78] Merzhanov, A. G. and Shtessel, E. A., 1973: Free convection and thermal explosion in reactive systems. Acta Astronautica, 18, 191.
[79] Molemaker, M. J. and Dijkstra, H. A., 2000: Multiple equilibria and stability of the North-Atlantic wind-driven ocean circulation. Numerical methods for bifurcation problems and large-scale dynamical systems, Doedel, E. and Tuckerman, L. S., Eds., Springer, The IMA volumes in Mathematics and its applications, Vol. 119, 35–65.
[80] Nagata, M., 1997: Three-dimensional traveling-wave solutions in plane Couette flow. Physical Review E, 55 (2), 2023–2025.
[81] Net, M., Alonso, A., and Sánchez, J., 2003: From stationary to complex time-dependent flows in two-dimensional annular thermal convection at moderate Rayleigh numbers. Phys. Fluids, 15 (5), 1314–1326.
[82] Net, M., Garcia, F., and Sánchez, J., 2008: On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech., 601, 317–337.
[83] Olendraru, C. and Sellier, A., 2002: Absolute-convective instabilities of the Batchelor vortex in the viscous case. J. Fluid Mech., 459, 371–396.
[84] Oron, A., 2000a: Nonlinear dynamics of three-dimensional long-wave Marangoni instability in thin liquid films. Phys. Fluids, 12, 1633–1645.
[85] Oron, A., 2000b: Three-dimensional nonlinear dynamics of thin liquid films. Phys. Rev. Lett., 85, 2108–2111, doi:10.1103/PhysRevLett.85.2108.
[86] Oron, A., Davis, S. H., and Bankoff, S. G., 1997: Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69, 931–980, doi:10.1103/RevModPhys.69.931.
[87] Pawlowski, R. P., Shadid, J. N., Simonis, J. P., and Walker, H. F., 2006: Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations. SIAM Rev., 48, 700–721.
[88] Puigjaner, D., Herrero, J., Giralt, F., and Simó, C., 2004: Stability analysis of the flow in a cubical cavity heated from below. Phys. Fluids., 16, 3639–3655.
[89] Puigjaner, D., Herrero, J.,Simoó, C., and Giralt, F., 2011: From steady solutions tochaotic flows in a Rayleigh-Bénard problem at moderate Rayleigh numbers. Physica D., 240, 920–934.
[90] Quon, C. and Ghil, M., 1992: Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech., 245, 449–484.
[91] Quon, C. and Ghil, M., 1995: Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio. J. Fluid Mech., 291, 33–56.
[92] Saad, Y., 1980: Variations on Arnoldi’s method for computing eigenelements of large un-symmetric matrices. Lin. Alg. & Appl., 34, 269–295.
[93] Saad, Y., 1992: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 29 (1), 209–228.
[94] Saad, Y., 1996: Iterative Methods for Sparse Linear Systems. PWS.
[95] Sánchez, J., Marqueés, F., and Loópez, J. M., 2002: A continuation and bifurcation technique for Navier-Stokes flows. J.Comput. Phys., 180, 78–98.
[96] Sánchez, J. and Net, M., 2010: On the multiple shooting continuation of periodic orbits by Newton-Krylov methods. Int. J.Bifurcation and Chaos, 20 (1), 1–19.
[97] Sánchez, J. and Net, M., 2013: A parallel algorithm for the computation of invariant tori in large-scale dissipative systems. Physica D, 252, 22–33.
[98] Sánchez, J., Net, M., García-Archilla, B., and Simoó, C., 2004: Newton-Krylov continuation of periodic orbits for Navier-Stokes flows. J.Comput. Phys., 201 (1), 13–33.
[99] Sánchez, J., Net, M., and Simoó, C., 2010: Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems. Physica D, 239, 123–133.
[100] Sánchez, J., Net, M., and Vega, J., 2006: Amplitude equations close to a triple-(+1) bifurcation point of D 4-symmetric periodic orbits in O(2)-equivariant systems. Discrete and Continuous Dynamical Systems-Series B, 6 (6), 1357–1380.
[101] Scheid, B., Oron, A., Colinet, P., Thiele, U., and Legros, J. C., 2002: Nonlinear evolution of nonuniformly heated falling liquid films. Phys. Fluids, 14, 4130–4151.
[102] Scheid, B., Ruyer-Quil, C., and Manneville, P., 2006: Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech., 562, 183–222, doi:10.1017/S0022112006000978.
[103] Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C., and Colinet, P., 2005: Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527, 303–335, doi:10.1017/S0022112004003179.
[104] Schneider, T. M. and Eckhardt, B., 2009: Edge states intermediate between laminar and turbulent dynamics in pipe flow. Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 367 (1888), 577–587.
[105] Schneider, T. M., Eckhardt, B., and Vollmer, J., 2007a: Statistical analysis of coherent structures in transitional pipe flow. Physical Review E, 75 (6), 066313.
[106] Schneider, T. M., Eckhardt, B., and Yorke, J. A., 2007b: Turbulence transition and the edge of chaos in pipe flow. Physical Review Letters, 99 (3), 034502.
[107] Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F., and Eckhardt, B., 2008: Laminarturbulent boundary in plane Couette flow. Physical Review E, 78 (3), 037 301.
[108] Schuttelaars, H. and De Swart, H., 1996: An idealized long–term morphodynamic model of a tidal embayment. Eur. J. Mech., B/Fluids, 15 (1), 55–80.
[109] Seydel, R., 1994: Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Springer-Verlag, New York, U.S.A.
[110] Sharma, A. and Khanna, R., 1998: Pattern formation in unstable thin liquid films. Phys. Rev. Lett., 81, 3463–3466, doi:10.1103/PhysRevLett.81.3463.
[111] Shroff, G. M. and Keller, H. B., 1993: Stabilization of unstable procedures: the recursive projection method. SIAM J.Numer. Anal., 30 (4), 1099–1120.
[112] Simó, C., 1990: Analytical and numerical computation of invariant manifolds. Modern methods in celestial mechanics, Benest, C. and Froeschlé, C., Eds., Editions Frontieres, 285– 330. Also at
[113] Simonnet, E., Ghil, M., and Dijkstra, H. A., 2005: Homoclinic bifurcations of barotropic QG double-gyre circulation. J. Mar. Res., 63, 931–956.
[114] Simonnet, E., Ghil, M., Ide, K., Temam, R., and Wang, S., 2003: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solutions. J. Phys. Oceanogr., 33, 712–728.
[115] Skufca, J., Yorke, J. A., and Eckhardt, B., 2006: The edge of chaos in a model for a parallel shear flow. Phys. Rev. Lett., 96, 174101.
[116] Sleijpen, G. and van der Vorst, H., 1996: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17, 401–425.
[117] Sleijpen, G., van der Vorst, H., and Wubs, F., 1999: Preconditioning for eigenproblems. Recent Advances in Numerical Methods and Applications II, Proceedings of the fourth International Conference, NMA ‘98, Sofia Bulgaria, 1923 August 1998, Iliev, O., Kasciev, M., Margenov, S., Sendov, B., and Vassilevski, F., Eds., World Scientific, 170–177.
[118] Sobey, I. and Drazin, P., 1986: Bifurcations of two-dimensional channel flows. Journal of Fluid Mechanics, 171, 263–287.
[119] Susan-Resiga, R., Ciocan, G., Muntean, S., Anton, I., and Avellan, F., 2006: Numerical simulation and analysis of swirling flow in the draft tube cone of a Francis turbine: 23 rd IAHR Symposium-Yokohama., Vol. 15. 1–15 pp.
[120] ter Brake, M., 2011: Tidal embayments: modelling and understanding their morphody-namics. Ph.D. thesis, Delft University of Technology.
[121] ter Brake, M. and Schuttelaars, H., 2010: Modeling equilibrium bed profiles of short tidal embayments. on the effect of the vertical distribution of suspended sediment and the influence of the boundary conditions. Ocean Dynamics, 60, 183–204.
[122] Thiele, U., 2010: Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys.: Condens. Matter, 22, 084 019, doi:10.1088/0953-8984/22/8/084019.
[123] Thiele, U. and Knobloch, E., 2004: Thin liquid films on a slightly inclined heated plate. Physica D, 190, 213–248.
[124] Thiele, U. and Knobloch, E., 2006: Driven drops on heterogeneous substrates: Onset of sliding motion. Phys. Rev. Lett., 97, 204 501, doi:10.1103/PhysRevLett.97.204501.
[125] Thiele, U., Velarde, M. G., Neuffer, K., Bestehorn, M., and Pomeau, Y., 2001: Sliding drops in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E, 64, 061601, doi: 10.1103/PhysRevE.64.061601.
[126] Thies, J. Wubs, F., and Dijkstra, H. A., 2009: Bifurcation analysis of 3D ocean flows using a parallel fully-implicit ocean model. Ocean Modelling, 30 (4), 287–297.
[127] Thual, O. and McWilliams, J. C., 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95.
[128] Tiesinga, G., Wubs, F., and Veldman, A., 2002: Bifurcation analysis of incompressible flow in a driven cavity by the Newton-Picard method. J. Comput. Appl. Math., 140 (1–2), 751–772.
[129] Toh, S. and Itano, T., 2003: A periodic-like solution in channel flow. J. Fluid Mech., 481, 67–76.
[130] Trefethen, L. and Bau, D., 1997: Numerical Linear Algebra. SIAM, Philadelphia.
[131] Trenberth, K. E., Olson, J. G., and Large, W. G., 1989: A global ocean wind stress climatology based on ECMWF analyses. Tech. rep., National Center for Atmospheric Research, Boulder, CO, U.S.A.
[132] Tseluiko, D., Baxter, J., and Thiele, U., 2013: A homotopy continuation approach for analysing finite-time singularities in thin liquid films. IMA J. Appl. Math., doi: 10.1093/imamat/hxt021, (online).
[133] Tuckerman, L. and Barkley, D., 1988: Global bifurcation to travelling wavesin axisymmetric convection. Phys. Rev. Lett., 61, 408–411.
[134] Tuckerman, L. S. and Barkley, D., 2000: Bifurcation analysis for timesteppers. Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Doedel, E. and Tuckerman, L. S., Eds., Springer–Verlag, IMA Volumes in Mathematics and its Applications, Vol. 119, 453–466.
[135] van Veen, L., Kawahara, G., and Atsushi, M., 2011: On Matrix-Free Computation of 2D Unstable Manifolds. SIAM Journal on Scientific Computing, 33 (1), 25–44.
[136] Viswanath, D., 2007: Recurrent motions within plane Couette turbulence. Journal Of Fluid Mechanics, 580, 339–358.
[137] Viswanath, D., 2009: The critical layer in pipe flow at high Reynolds number. Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 367 (1888), 561–576.
[138] Waleffe, F., 2003: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15, 1517–1534.
[139] Walker, H. F., 1999: Anadaptationof Krylov subspace methods topath following problems. SIAM J. Sci. Comput., 21, 1191–1198.
[140] Wedin, H. and Kerswell, R. R., 2004: Exact coherent structures in pipe flow: travelling wave solutions. J.Fluid Mech., 508, 333–371.
[141] Wheeler, P. and Barkley, D., 2006: Computation of spiral spectra. SIAM J. Appl. Dyn. Syst., 5, 157–177.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 74 *
Loading metrics...

Abstract views

Total abstract views: 585 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.