Skip to main content Accessibility help
×
×
Home

A Parallel Domain Decomposition Algorithm for Simulating Blood Flow with Incompressible Navier-Stokes Equations with Resistive Boundary Condition

  • Yuqi Wu (a1) and Xiao-Chuan Cai (a2)

Abstract

We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.

Copyright

Corresponding author

Corresponding author.Email:yuqi.wu@colorado.edu

References

Hide All
[1]Badia, S., Quaini, A. and Quarteroni, A., Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30 (2008), 17781805.
[2]Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F. and Zhang, H., PETSc users manual, Technical report, Argonne National Laboratory, 2010.
[3]Barker, A. T., Monolithic Fluid-Structure Interaction Algorithms for Parallel Computing with Application to Blood Flow, PhD thesis, University of Colorado at Boulder, 2009.
[4]Barker, A. T. and Cai, X.-C., Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys., 229 (2010), 642659.
[5]Bazilevs, Y., Calo, V., Zhang, Y. and Hughes, T., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38 (2006), 310322.
[6]Bazilevs, Y., Calo, V., Hughes, T. and Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. Mech., 43 (2008), 337.
[7]Cai, X.-C., Gropp, W. D., Keyes, D. E., Melvin, R. G. and Young, D. P., Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19 (1998), 246265.
[8]Cai, X.-C. and Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), 792797.
[9]Causin, P., Gerbeau, J. F. and Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194 (2005), 45064527.
[10]Dennis, J. E. Jr. and Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1996.
[11]Donea, J., Giuliani, S. and Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33 (1982), 689723.
[12]Eisenstat, S. C. and Walker, H. F., Globally convergent inexact Newton method, SIAM J. Optim., 4 (1994), 393422.
[13]Eisenstat, S. C. and Walker, H. F., Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17 (1996), 1632.
[14]Farhat, C. and Geuzaine, P., Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids, Comput. Methods Appl. Mech. Eng., 193 (2004), 40734095.
[15]Farhat, C., Geuzaine, P. and Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174 (2001), 669694.
[16]Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J. R. and Taylor, C. A., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Eng., 195 (2006), 56855706.
[17]Formaggia, L., Gerbeau, J. F., Nobile, F. and Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Eng., 191 (2001), 561582.
[18]Fung, Y. C., Biomechanics: Circulation, 2nd edition, Springer-Verlag, New York, 1997.
[19]Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 193 (2004), 123.
[20]Hughes, T. J. R., Liu, W. K. and Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29 (1981), 329349.
[21]Hwang, F.-N. and Cai, X.-C., A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., 204 (2005), 666691.
[22]Karypis, G., Aggarwal, R., Schloegel, K., Kumar, V. and Shekhar, S., METIS/ParMETIS web page, University of Minnesota, 2010, http://glaros.dtc.umn.edu/gkhome/views/metis.
[23]Le, P. Tallec and Mouro, J., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Eng., 190 (2001), 30393067.
[24]Michler, C., van Brummelen, E. H., Hulshoff, S. J. and de Borst, R., The relevance of conservation for stability and accuracyof numerical methods for fluid-structure interaction, Comput. Methods Appl. Mech. Eng., 192 (2003), 41954215.
[25]Nichols, W. W. and O’Rourke, M. F., McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, Oxford University Press, New York, 1998.
[26]Nobile, F., Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics, PhD thesis, Ecole Polytechnique Federade Lausanne, 2001.
[27]Owen, S. J. and Shepherd, J. F., CUBIT project web page, Sandia National Laboratories, 2010, http://cubit.sandia.gov/.
[28]Piperno, S. and Farhat, C., Partitioned procedures for the transient solution of coupled aeroe-lastic problems-part II: energy transfer analysis and three-dimensional applications, Com-put. Methods Appl. Mech. Eng., 190 (2001), 31473170.
[29]Saad, Y. and Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsysmetric linear system, SIAM J. Sci. Stat. Comput., 7 (1986), 856869.
[30]Taylor, C. A. and Draney, M. T., Experimental and computational methods in cardiovascular fluid mechanics, Ann. Rev. Fluid Mech., 36 (2004), 197231.
[31]Taylor, C. A. and Humphrey, J. D., Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics, Comput. Methods Appl. Mech. Eng., 198 (2009), 35143523.
[32]Vignon, I. E. and Taylor, C. A., Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries, Wave Motion, 39 (2004), 361374.
[33]Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E. and Taylor, C. A., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Eng., 195 (2006), 37763796.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed