Skip to main content
×
Home

Particle-Based Modeling of Asymmetric Flexible Fibers in Viscous Flows

  • Xiufeng Yang (a1) (a2) and Moubin Liu (a3) (a4)
Abstract
Abstract

The present paper follows our previous work [Yang et al., Phys. Rev. E, 90 (2014), 063011] in which the bending modes of a symmetric flexible fiber in viscous flows were studied by using a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG). It was shown that a symmetric flexible fiber can undergo four different bending modes including stable U-shape, slight swing, violent flapping and stable closure modes. For an asymmetric flexible fiber, the bending modes can be different. This paper numerically studies the fiber shape, flow field and fluid drag of an asymmetric flexible fiber immersed in a viscous fluid flow by using the SPH-EBG coupling method. An asymmetric number is defined to describe the asymmetry of a flexible fiber. The effects of the asymmetric number on the fiber shape, flow field and fluid drag are investigated.

Copyright
Corresponding author
*Corresponding author. Email addresses: xyang@iastate.edu (X. F. Yang), mbliu@pku.edu.cn (M. B. Liu)
References
Hide All
[1] Wu T. Y., Fish swimming and bird/insect flight, Annu. Rev. Fluid Mech., 43 (2011), 2558.
[2] Liao J. C., Beal D. N., Lauder G. V. and Triantafyllou M. S., Fish exploiting vortices decrease muscle activity, Science, 302 (2003), 15661569.
[3] Vogel S., Drag and reconfiguration of broad leaves in high winds, J. Exp. Bot., 40 (1989), 941948.
[4] Vogel S., Drag and flexibility in sessile organisms, American Zoologist, 24 (1984), 3744.
[5] Shelley M. J. and Zhang J., Flapping and bending bodies interacting with fluid flows, Annu. Rev. Fluid Mech., 43 (2011), 449465.
[6] Schouveiler L. and Eloy C., Flow-induced draping, Phys. Rev. Lett., 111 (2013), 064301.
[7] Vogel S., Life in Moving Fluids: the Physical Biology of Flow, Princeton University Press, Princeton, 1994.
[8] Miller L. A., Santhanakrishnan A., Jones S., Hamlet C., Mertens K. and Zhu L., Reconfiguration and the reduction of vortex-induced vibrations in broad leaves, J. Exp. Biol., 215 (2012), 27162727.
[9] Gossellin F., de Langre E. and Machado-Almeida B. A., Drag reduction of flexible plates by reconfiguration, J. Fluid Mech., 650 (2010), 319341.
[10] Alben S., Shelley M. and Zhang J., Drag reduction through self-similar bending of a flexible body, Nature, 420 (2002), 479481.
[11] Alben S., Shelley M. and Zhang J., How flexibility induces streamlining in a two-dimensional flow, Phys. Fluids, 16 (2004), 16941713.
[12] Yang X. F., Liu M. B. and Peng S. L., Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids, Phys. Rev. E, 90 (2014), 063011.
[13] Yang X. F. and Liu M. B., Bending modes and transition criteria for a flexible fiber in viscous flows, J. Hydrodyn., 28 (2016), 10431048.
[14] Yang X. F., Liu M. B., Peng S. L. and Huang C. G., Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method, Coast. Eng., 108 (2016), 5664.
[15] Liu M. B. and Liu G. R., Smoothed Particle Hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17 (2010), 2576.
[16] Zhou D. and Wagoner R., Development and application of sheet-forming simulation, J. Mater. Process Tech., 50 (1995), 116.
[17] Hosseini S. M. and Feng J. J., A particle-based model for the transport of erythrocytes in capillaries, Chem. Eng. Sci., 64 (2009), 44884497.
[18] Monaghan J. J., Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys., 30 (1992), 543574.
[19] Lucy L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (1977), 10131024.
[20] Gingold R. A. and Monaghan J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181 (1977), 375389.
[21] Yang X. F., Peng S. L. and Liu M. B., A new kernel function for SPH with applications to free surface flows, Appl. Math. Model., 38 (2014), 38223833.
[22] Yang X. F., Liu M. B. and Peng S. L., Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability, Comput. Fluids, 92 (2014), 199208.
[23] Yang X., Dai L. and Kong S.-C., Simulation of liquid drop impact on dry and wet surfaces using SPH method, P. Combust. Inst., 36 (2017), 23932399.
[24] Morris J. P., Fox P. J. and Zhu Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136 (1997), 214226.
[25] Liu M. B. and Li S. M., On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics, J. Hydrodyn., 28 (2016), 731745.
[26] Yang X. F., Peng S. L., Liu M. B. and Shao J. R., Numerical simulation of ballast water by SPH method, Int. J. Comput. Meth., 9 (2012), 1240002.
[27] Yang X. F. and Liu M. B., Numerical modeling of oil spill containment by boom using SPH, Sci. China Phys. Mech. Astron., 56 (2013), 315321.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between 28th July 2017 - 18th November 2017. This data will be updated every 24 hours.